fix: update train scripts and configs for other models (#1164)

* feat: falcon config

* feat: mpt config

* chore: gitignore

* refactor: step calculation

* fix: attention mask + shuffle on epoch end

* fix: return tensors

* fix: wait for everyone

* chore: config

* chore: ds config

* fix: remove ccols

* fix: logging and saving

* chore: add einops
This commit is contained in:
Zach Nussbaum 2023-07-12 15:18:24 -04:00 committed by GitHub
parent e8b19b8e82
commit 6c4f449b7a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 245 additions and 29 deletions

3
.gitignore vendored
View File

@ -1,3 +1,6 @@
*.arrow
squad_*
*sbert_embedded*
*.pkl
ckpts*
.deepspeed_env

View File

@ -0,0 +1,49 @@
{
"train_batch_size": "auto",
"gradient_accumulation_steps": "auto",
"train_micro_batch_size_per_gpu": "auto",
"fp16": {
"enabled": "auto",
"min_loss_scale": 1,
"loss_scale_window": 1000,
"hysteresis": 2,
"initial_scale_power": 32
},
"bf16": {
"enabled": "auto"
},
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": 1,
"offload_param": {
"device": "none"
},
"offload_optimizer": {
"device": "none"
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"contiguous_gradients": true
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": [
0.9,
0.999
],
"eps": 1e-08
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"warmup_type": "linear",
"total_num_steps": "auto"
}
}
}

View File

@ -0,0 +1,48 @@
{
"train_batch_size": "auto",
"gradient_accumulation_steps": "auto",
"train_micro_batch_size_per_gpu": "auto",
"fp16": {
"enabled": "auto",
"min_loss_scale": 1,
"loss_scale_window": 1000,
"hysteresis": 2,
"initial_scale_power": 32
},
"bf16": {
"enabled": "auto"
},
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": 2,
"offload_param": {
"device": "none"
},
"offload_optimizer": {
"device": "none"
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"contiguous_gradients": true
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": [
0.9,
0.999
],
"eps": 1e-08
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"warmup_type": "linear"
}
}
}

View File

@ -0,0 +1,34 @@
# model/tokenizer
model_name: "tiiuae/falcon-7b"
tokenizer_name: "tiiuae/falcon-7b"
gradient_checkpointing: true
save_name: "nomic-ai/gpt4all-falcon"
# dataset
streaming: false
num_proc: 64
dataset_path: "nomic-ai/gpt4all-j-prompt-generations"
revision: "v1.3-groovy"
max_length: 1024
batch_size: 32
# train dynamics
lr: 2.0e-5
min_lr: 0
weight_decay: 0.0
eval_every: 500
eval_steps: 105
save_every: 1000
log_grads_every: 500
output_dir: "ckpts/falcon"
checkpoint: "/home/paperspace/gpt4all/ckpts/mpt/step_1000"
lora: false
warmup_steps: 500
num_epochs: 2
# logging
wandb: true
wandb_entity: "gpt4all"
wandb_project_name: "gpt4all"
seed: 42

View File

@ -0,0 +1,34 @@
# model/tokenizer
model_name: "mosaicml/mpt-7b"
tokenizer_name: "mosaicml/mpt-7b"
gradient_checkpointing: false
save_name: "nomic-ai/mpt-finetuned-round2"
# dataset
streaming: false
num_proc: 64
dataset_path: "nomic-ai/gpt4all-j-prompt-generations"
revision: "v1.3-groovy"
max_length: 1024
batch_size: 8
# train dynamics
lr: 2.0e-5
min_lr: 0
weight_decay: 0.0
eval_every: 500
eval_steps: 105
save_every: 1000
log_grads_every: 500
output_dir: "ckpts/mpt"
checkpoint: null
lora: false
warmup_steps: 500
num_epochs: 2
# logging
wandb: false
wandb_entity: "gpt4all"
wandb_project_name: "gpt4all"
seed: 42

View File

@ -0,0 +1,34 @@
# model/tokenizer
model_name: "openlm-research/open_llama_7b"
tokenizer_name: "openlm-research/open_llama_7b"
gradient_checkpointing: true
save_name: "nomic-ai/gpt4all-openllama"
# dataset
streaming: false
num_proc: 64
dataset_path: "nomic-ai/gpt4all-updated"
revision: null
max_length: 1024
batch_size: 32
# train dynamics
lr: 2.0e-5
min_lr: 0
weight_decay: 0.0
eval_every: 500
log_every: 10
save_every: 1000
log_grads_every: 500
output_dir: "ckpts/falcon"
checkpoint: null
lora: false
warmup_steps: 500
num_epochs: 3
# logging
wandb: true
wandb_entity: "gpt4all"
wandb_project_name: "gpt4all"
seed: 42

View File

@ -12,7 +12,7 @@ def tokenize_inputs(config, tokenizer, examples):
# hacky backward compatible
different_eos = tokenizer.eos_token != "</s>"
out = {"labels": [], "input_ids": []}
out = {"labels": [], "input_ids": [], "attention_mask": []}
for prompt, response in zip(examples["prompt"], examples["response"]):
if different_eos:
if response.count("</s> \n") > 0:
@ -49,9 +49,10 @@ def tokenize_inputs(config, tokenizer, examples):
print(response)
raise
input_tokens = tokenizer.pad({"input_ids": input_tokens}, padding="max_length", max_length=max_length)["input_ids"]
padded = tokenizer.pad({"input_ids": input_tokens}, padding="max_length", max_length=max_length, return_tensors="pt")
out["labels"].append(labels)
out["input_ids"].append(input_tokens)
out["input_ids"].append(padded["input_ids"])
out["attention_mask"].append(padded["attention_mask"])
out = {k: torch.stack(v) if isinstance(v, list) else v for k, v in out.items()}
@ -72,7 +73,7 @@ def load_data(config, tokenizer):
dataset = load_dataset("json", data_files=files, split="train")
else:
dataset = load_dataset(dataset_path, split="train")
dataset = load_dataset(dataset_path, split="train", revision=config["revision"] if "revision" in config else None)
dataset = dataset.train_test_split(test_size=.05, seed=config["seed"])
@ -83,19 +84,23 @@ def load_data(config, tokenizer):
else:
kwargs = {}
cols_to_keep = ["input_ids", "labels", "attention_mask"]
# tokenize inputs and return labels and attention mask
train_dataset = train_dataset.map(
lambda ele: tokenize_inputs(config, tokenizer, ele),
batched=True,
remove_columns=["source", "prompt"],
**kwargs
)
remove_cols = [col for col in train_dataset.column_names if col not in cols_to_keep]
train_dataset = train_dataset.remove_columns(remove_cols)
val_dataset = val_dataset.map(
lambda ele: tokenize_inputs(config, tokenizer, ele),
batched=True,
remove_columns=["source", "prompt"],
**kwargs
)
remove_cols = [col for col in val_dataset.column_names if col not in cols_to_keep]
val_dataset = val_dataset.remove_columns(remove_cols)
train_dataset = train_dataset.with_format("torch")
val_dataset = val_dataset.with_format("torch")
@ -106,12 +111,14 @@ def load_data(config, tokenizer):
train_dataset,
collate_fn=DefaultDataCollator(),
batch_size=config["batch_size"],
shuffle=True,
)
val_dataloader = DataLoader(
val_dataset,
collate_fn=DefaultDataCollator(),
batch_size=config["batch_size"],
shuffle=True,
)
return train_dataloader, val_dataloader

View File

@ -1,10 +1,10 @@
accelerate
datasets
einops
torchmetrics
evaluate
transformers>=4.28.0
wandb
pip
peft
nodelist-inflator
deepspeed

View File

@ -1,5 +1,5 @@
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler, LlamaForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler
import torch
from torch.optim import AdamW
from argparse import ArgumentParser
@ -42,7 +42,7 @@ def train(accelerator, config):
accelerator.print(config)
accelerator.print(f"Using {accelerator.num_processes} GPUs")
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'])
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'], use_fast=False)
# if no pad token, set it to eos
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
@ -53,6 +53,7 @@ def train(accelerator, config):
checkpoint = config["gradient_checkpointing"]
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
use_cache=False if checkpoint else True,
trust_remote_code=True)
@ -86,7 +87,7 @@ def train(accelerator, config):
# decay to min_lr instead of 0
lr_ratio = config["min_lr"] / config["lr"]
accelerator.print(f"Len of train_dataloader: {len(train_dataloader)}")
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * config["num_epochs"]
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * (config["num_epochs"])
# instead of decaying to zero, decay to ratio of min_lr / lr
total_num_steps += int(total_num_steps * lr_ratio) + config["warmup_steps"]
accelerator.print(f"Total training steps: {total_num_steps}")
@ -104,7 +105,7 @@ def train(accelerator, config):
)
else:
scheduler = DummyScheduler(
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
optimizer, total_num_steps=total_num_steps, warmup_num_steps=config["warmup_steps"]
)
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
@ -117,26 +118,34 @@ def train(accelerator, config):
if config["checkpoint"]:
accelerator.load_state(config["checkpoint"])
accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}")
path = os.path.basename(config["train_args"]["resume_from_checkpoint"])
path = os.path.basename(config["checkpoint"])
training_difference = os.path.splitext(path)[0]
resume_step = int(training_difference.replace("step_", ""))
accelerator.skip_first_batches(train_dataloader, resume_step)
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
accelerator.print(f"Resuming from step {resume_step}")
else:
resume_step = 0
# log gradients
if accelerator.is_main_process and config["wandb"]:
wandb.watch(model, log_freq=config["log_grads_every"], log="all")
for epoch in range(config["num_epochs"]):
accelerator.wait_for_everyone()
for epoch in range(0, config["num_epochs"]):
train_loss = MeanMetric(nan_strategy="error").to(model.device)
for step, batch in enumerate(tqdm(train_dataloader)):
curr_step = epoch * len(train_dataloader) + step
model.train()
outputs = model(**batch)
loss = outputs.loss
# gather loss before backprop in case of gradient accumulation
loss_values = accelerator.gather_for_metrics({"loss": loss.detach().float()})
if config["wandb"]:
accelerator.log({"loss": torch.mean(loss_values["loss"]).item()}, step=curr_step)
train_loss.update(loss_values["loss"])
loss = loss / gradient_accumulation_steps
@ -144,9 +153,8 @@ def train(accelerator, config):
# get gradient norm of all params
# log LR in case something weird happens
if step > 0 and step % (config["eval_every"] // 10) == 0:
if step > 0 and step % (config["log_lr_every"]) == 0:
if config["wandb"]:
curr_step = step + epoch * len(train_dataloader)
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step)
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
@ -156,7 +164,6 @@ def train(accelerator, config):
if step > 0 and step % config["save_every"] == 0:
curr_step = step + epoch * len(train_dataloader)
accelerator.save_state(f"{config['output_dir']}/step_{curr_step}")
if step > 0 and (step % config["eval_every"] == 0 or step == len(train_dataloader) - 1):
@ -170,7 +177,6 @@ def train(accelerator, config):
}
if config["wandb"]:
curr_step = step + epoch * len(train_dataloader)
accelerator.log({**log_train, **log_val}, step=curr_step)
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
@ -181,8 +187,14 @@ def train(accelerator, config):
accelerator.print(f"Epoch {epoch} finished")
accelerator.print(f"Pushing to HF hub")
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
f"{config['output_dir']}/epoch_{epoch}",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(model),
)
try:
if accelerator.is_main_process:
unwrapped_model.push_to_hub(config["save_name"] + f"-epoch_{epoch}", private=True)
@ -191,21 +203,16 @@ def train(accelerator, config):
accelerator.print(e)
accelerator.print(f"Failed to push to hub")
if config["num_epochs"] > 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
f"{config['output_dir']}/epoch_{epoch}",
f"{config['output_dir']}/final",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(model),
)
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
f"{config['output_dir']}/final",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(model),
)
accelerator.end_training()