mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
fix: update train scripts and configs for other models (#1164)
* feat: falcon config * feat: mpt config * chore: gitignore * refactor: step calculation * fix: attention mask + shuffle on epoch end * fix: return tensors * fix: wait for everyone * chore: config * chore: ds config * fix: remove ccols * fix: logging and saving * chore: add einops
This commit is contained in:
parent
e8b19b8e82
commit
6c4f449b7a
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,3 +1,6 @@
|
||||
*.arrow
|
||||
squad_*
|
||||
*sbert_embedded*
|
||||
*.pkl
|
||||
ckpts*
|
||||
.deepspeed_env
|
||||
|
49
gpt4all-training/configs/deepspeed/ds_config_mpt.json
Normal file
49
gpt4all-training/configs/deepspeed/ds_config_mpt.json
Normal file
@ -0,0 +1,49 @@
|
||||
{
|
||||
"train_batch_size": "auto",
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"min_loss_scale": 1,
|
||||
"loss_scale_window": 1000,
|
||||
"hysteresis": 2,
|
||||
"initial_scale_power": 32
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"gradient_clipping": 1.0,
|
||||
"zero_optimization": {
|
||||
"stage": 1,
|
||||
"offload_param": {
|
||||
"device": "none"
|
||||
},
|
||||
"offload_optimizer": {
|
||||
"device": "none"
|
||||
},
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"contiguous_gradients": true
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": "auto",
|
||||
"betas": [
|
||||
0.9,
|
||||
0.999
|
||||
],
|
||||
"eps": 1e-08
|
||||
}
|
||||
},
|
||||
"scheduler": {
|
||||
"type": "WarmupDecayLR",
|
||||
"params": {
|
||||
"warmup_min_lr": 0,
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto",
|
||||
"warmup_type": "linear",
|
||||
"total_num_steps": "auto"
|
||||
}
|
||||
}
|
||||
}
|
48
gpt4all-training/configs/deepspeed/ds_config_pythia.json
Normal file
48
gpt4all-training/configs/deepspeed/ds_config_pythia.json
Normal file
@ -0,0 +1,48 @@
|
||||
{
|
||||
"train_batch_size": "auto",
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"min_loss_scale": 1,
|
||||
"loss_scale_window": 1000,
|
||||
"hysteresis": 2,
|
||||
"initial_scale_power": 32
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"gradient_clipping": 1.0,
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"offload_param": {
|
||||
"device": "none"
|
||||
},
|
||||
"offload_optimizer": {
|
||||
"device": "none"
|
||||
},
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"contiguous_gradients": true
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": "auto",
|
||||
"betas": [
|
||||
0.9,
|
||||
0.999
|
||||
],
|
||||
"eps": 1e-08
|
||||
}
|
||||
},
|
||||
"scheduler": {
|
||||
"type": "WarmupLR",
|
||||
"params": {
|
||||
"warmup_min_lr": 0,
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto",
|
||||
"warmup_type": "linear"
|
||||
}
|
||||
}
|
||||
}
|
34
gpt4all-training/configs/train/finetune_falcon.yaml
Normal file
34
gpt4all-training/configs/train/finetune_falcon.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
# model/tokenizer
|
||||
model_name: "tiiuae/falcon-7b"
|
||||
tokenizer_name: "tiiuae/falcon-7b"
|
||||
gradient_checkpointing: true
|
||||
save_name: "nomic-ai/gpt4all-falcon"
|
||||
|
||||
# dataset
|
||||
streaming: false
|
||||
num_proc: 64
|
||||
dataset_path: "nomic-ai/gpt4all-j-prompt-generations"
|
||||
revision: "v1.3-groovy"
|
||||
max_length: 1024
|
||||
batch_size: 32
|
||||
|
||||
# train dynamics
|
||||
lr: 2.0e-5
|
||||
min_lr: 0
|
||||
weight_decay: 0.0
|
||||
eval_every: 500
|
||||
eval_steps: 105
|
||||
save_every: 1000
|
||||
log_grads_every: 500
|
||||
output_dir: "ckpts/falcon"
|
||||
checkpoint: "/home/paperspace/gpt4all/ckpts/mpt/step_1000"
|
||||
lora: false
|
||||
warmup_steps: 500
|
||||
num_epochs: 2
|
||||
|
||||
# logging
|
||||
wandb: true
|
||||
wandb_entity: "gpt4all"
|
||||
wandb_project_name: "gpt4all"
|
||||
seed: 42
|
||||
|
34
gpt4all-training/configs/train/finetune_mpt.yaml
Normal file
34
gpt4all-training/configs/train/finetune_mpt.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
# model/tokenizer
|
||||
model_name: "mosaicml/mpt-7b"
|
||||
tokenizer_name: "mosaicml/mpt-7b"
|
||||
gradient_checkpointing: false
|
||||
save_name: "nomic-ai/mpt-finetuned-round2"
|
||||
|
||||
# dataset
|
||||
streaming: false
|
||||
num_proc: 64
|
||||
dataset_path: "nomic-ai/gpt4all-j-prompt-generations"
|
||||
revision: "v1.3-groovy"
|
||||
max_length: 1024
|
||||
batch_size: 8
|
||||
|
||||
# train dynamics
|
||||
lr: 2.0e-5
|
||||
min_lr: 0
|
||||
weight_decay: 0.0
|
||||
eval_every: 500
|
||||
eval_steps: 105
|
||||
save_every: 1000
|
||||
log_grads_every: 500
|
||||
output_dir: "ckpts/mpt"
|
||||
checkpoint: null
|
||||
lora: false
|
||||
warmup_steps: 500
|
||||
num_epochs: 2
|
||||
|
||||
# logging
|
||||
wandb: false
|
||||
wandb_entity: "gpt4all"
|
||||
wandb_project_name: "gpt4all"
|
||||
seed: 42
|
||||
|
34
gpt4all-training/configs/train/finetune_openllama.yaml
Normal file
34
gpt4all-training/configs/train/finetune_openllama.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
# model/tokenizer
|
||||
model_name: "openlm-research/open_llama_7b"
|
||||
tokenizer_name: "openlm-research/open_llama_7b"
|
||||
gradient_checkpointing: true
|
||||
save_name: "nomic-ai/gpt4all-openllama"
|
||||
|
||||
# dataset
|
||||
streaming: false
|
||||
num_proc: 64
|
||||
dataset_path: "nomic-ai/gpt4all-updated"
|
||||
revision: null
|
||||
max_length: 1024
|
||||
batch_size: 32
|
||||
|
||||
# train dynamics
|
||||
lr: 2.0e-5
|
||||
min_lr: 0
|
||||
weight_decay: 0.0
|
||||
eval_every: 500
|
||||
log_every: 10
|
||||
save_every: 1000
|
||||
log_grads_every: 500
|
||||
output_dir: "ckpts/falcon"
|
||||
checkpoint: null
|
||||
lora: false
|
||||
warmup_steps: 500
|
||||
num_epochs: 3
|
||||
|
||||
# logging
|
||||
wandb: true
|
||||
wandb_entity: "gpt4all"
|
||||
wandb_project_name: "gpt4all"
|
||||
seed: 42
|
||||
|
@ -12,7 +12,7 @@ def tokenize_inputs(config, tokenizer, examples):
|
||||
|
||||
# hacky backward compatible
|
||||
different_eos = tokenizer.eos_token != "</s>"
|
||||
out = {"labels": [], "input_ids": []}
|
||||
out = {"labels": [], "input_ids": [], "attention_mask": []}
|
||||
for prompt, response in zip(examples["prompt"], examples["response"]):
|
||||
if different_eos:
|
||||
if response.count("</s> \n") > 0:
|
||||
@ -49,9 +49,10 @@ def tokenize_inputs(config, tokenizer, examples):
|
||||
print(response)
|
||||
raise
|
||||
|
||||
input_tokens = tokenizer.pad({"input_ids": input_tokens}, padding="max_length", max_length=max_length)["input_ids"]
|
||||
padded = tokenizer.pad({"input_ids": input_tokens}, padding="max_length", max_length=max_length, return_tensors="pt")
|
||||
out["labels"].append(labels)
|
||||
out["input_ids"].append(input_tokens)
|
||||
out["input_ids"].append(padded["input_ids"])
|
||||
out["attention_mask"].append(padded["attention_mask"])
|
||||
|
||||
out = {k: torch.stack(v) if isinstance(v, list) else v for k, v in out.items()}
|
||||
|
||||
@ -72,7 +73,7 @@ def load_data(config, tokenizer):
|
||||
dataset = load_dataset("json", data_files=files, split="train")
|
||||
|
||||
else:
|
||||
dataset = load_dataset(dataset_path, split="train")
|
||||
dataset = load_dataset(dataset_path, split="train", revision=config["revision"] if "revision" in config else None)
|
||||
|
||||
dataset = dataset.train_test_split(test_size=.05, seed=config["seed"])
|
||||
|
||||
@ -83,19 +84,23 @@ def load_data(config, tokenizer):
|
||||
else:
|
||||
kwargs = {}
|
||||
|
||||
cols_to_keep = ["input_ids", "labels", "attention_mask"]
|
||||
# tokenize inputs and return labels and attention mask
|
||||
train_dataset = train_dataset.map(
|
||||
lambda ele: tokenize_inputs(config, tokenizer, ele),
|
||||
batched=True,
|
||||
remove_columns=["source", "prompt"],
|
||||
**kwargs
|
||||
)
|
||||
remove_cols = [col for col in train_dataset.column_names if col not in cols_to_keep]
|
||||
train_dataset = train_dataset.remove_columns(remove_cols)
|
||||
|
||||
val_dataset = val_dataset.map(
|
||||
lambda ele: tokenize_inputs(config, tokenizer, ele),
|
||||
batched=True,
|
||||
remove_columns=["source", "prompt"],
|
||||
**kwargs
|
||||
)
|
||||
remove_cols = [col for col in val_dataset.column_names if col not in cols_to_keep]
|
||||
val_dataset = val_dataset.remove_columns(remove_cols)
|
||||
|
||||
train_dataset = train_dataset.with_format("torch")
|
||||
val_dataset = val_dataset.with_format("torch")
|
||||
@ -106,12 +111,14 @@ def load_data(config, tokenizer):
|
||||
train_dataset,
|
||||
collate_fn=DefaultDataCollator(),
|
||||
batch_size=config["batch_size"],
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
val_dataloader = DataLoader(
|
||||
val_dataset,
|
||||
collate_fn=DefaultDataCollator(),
|
||||
batch_size=config["batch_size"],
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
return train_dataloader, val_dataloader
|
||||
|
@ -1,10 +1,10 @@
|
||||
accelerate
|
||||
datasets
|
||||
einops
|
||||
torchmetrics
|
||||
evaluate
|
||||
transformers>=4.28.0
|
||||
wandb
|
||||
pip
|
||||
peft
|
||||
nodelist-inflator
|
||||
deepspeed
|
||||
|
@ -1,5 +1,5 @@
|
||||
import os
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler, LlamaForCausalLM
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler
|
||||
import torch
|
||||
from torch.optim import AdamW
|
||||
from argparse import ArgumentParser
|
||||
@ -42,7 +42,7 @@ def train(accelerator, config):
|
||||
accelerator.print(config)
|
||||
accelerator.print(f"Using {accelerator.num_processes} GPUs")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'])
|
||||
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'], use_fast=False)
|
||||
# if no pad token, set it to eos
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
@ -53,6 +53,7 @@ def train(accelerator, config):
|
||||
|
||||
|
||||
checkpoint = config["gradient_checkpointing"]
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
|
||||
use_cache=False if checkpoint else True,
|
||||
trust_remote_code=True)
|
||||
@ -86,7 +87,7 @@ def train(accelerator, config):
|
||||
# decay to min_lr instead of 0
|
||||
lr_ratio = config["min_lr"] / config["lr"]
|
||||
accelerator.print(f"Len of train_dataloader: {len(train_dataloader)}")
|
||||
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * config["num_epochs"]
|
||||
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * (config["num_epochs"])
|
||||
# instead of decaying to zero, decay to ratio of min_lr / lr
|
||||
total_num_steps += int(total_num_steps * lr_ratio) + config["warmup_steps"]
|
||||
accelerator.print(f"Total training steps: {total_num_steps}")
|
||||
@ -104,7 +105,7 @@ def train(accelerator, config):
|
||||
)
|
||||
else:
|
||||
scheduler = DummyScheduler(
|
||||
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
|
||||
optimizer, total_num_steps=total_num_steps, warmup_num_steps=config["warmup_steps"]
|
||||
)
|
||||
|
||||
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
|
||||
@ -117,26 +118,34 @@ def train(accelerator, config):
|
||||
if config["checkpoint"]:
|
||||
accelerator.load_state(config["checkpoint"])
|
||||
accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}")
|
||||
path = os.path.basename(config["train_args"]["resume_from_checkpoint"])
|
||||
path = os.path.basename(config["checkpoint"])
|
||||
training_difference = os.path.splitext(path)[0]
|
||||
resume_step = int(training_difference.replace("step_", ""))
|
||||
accelerator.skip_first_batches(train_dataloader, resume_step)
|
||||
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
|
||||
accelerator.print(f"Resuming from step {resume_step}")
|
||||
else:
|
||||
resume_step = 0
|
||||
|
||||
|
||||
# log gradients
|
||||
if accelerator.is_main_process and config["wandb"]:
|
||||
wandb.watch(model, log_freq=config["log_grads_every"], log="all")
|
||||
|
||||
for epoch in range(config["num_epochs"]):
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
for epoch in range(0, config["num_epochs"]):
|
||||
train_loss = MeanMetric(nan_strategy="error").to(model.device)
|
||||
for step, batch in enumerate(tqdm(train_dataloader)):
|
||||
curr_step = epoch * len(train_dataloader) + step
|
||||
model.train()
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
|
||||
# gather loss before backprop in case of gradient accumulation
|
||||
loss_values = accelerator.gather_for_metrics({"loss": loss.detach().float()})
|
||||
if config["wandb"]:
|
||||
accelerator.log({"loss": torch.mean(loss_values["loss"]).item()}, step=curr_step)
|
||||
train_loss.update(loss_values["loss"])
|
||||
|
||||
loss = loss / gradient_accumulation_steps
|
||||
@ -144,9 +153,8 @@ def train(accelerator, config):
|
||||
# get gradient norm of all params
|
||||
|
||||
# log LR in case something weird happens
|
||||
if step > 0 and step % (config["eval_every"] // 10) == 0:
|
||||
if step > 0 and step % (config["log_lr_every"]) == 0:
|
||||
if config["wandb"]:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step)
|
||||
|
||||
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
||||
@ -156,7 +164,6 @@ def train(accelerator, config):
|
||||
|
||||
|
||||
if step > 0 and step % config["save_every"] == 0:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.save_state(f"{config['output_dir']}/step_{curr_step}")
|
||||
|
||||
if step > 0 and (step % config["eval_every"] == 0 or step == len(train_dataloader) - 1):
|
||||
@ -170,7 +177,6 @@ def train(accelerator, config):
|
||||
}
|
||||
|
||||
if config["wandb"]:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.log({**log_train, **log_val}, step=curr_step)
|
||||
|
||||
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
|
||||
@ -181,8 +187,14 @@ def train(accelerator, config):
|
||||
|
||||
accelerator.print(f"Epoch {epoch} finished")
|
||||
accelerator.print(f"Pushing to HF hub")
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
|
||||
unwrapped_model.save_pretrained(
|
||||
f"{config['output_dir']}/epoch_{epoch}",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
try:
|
||||
if accelerator.is_main_process:
|
||||
unwrapped_model.push_to_hub(config["save_name"] + f"-epoch_{epoch}", private=True)
|
||||
@ -191,21 +203,16 @@ def train(accelerator, config):
|
||||
accelerator.print(e)
|
||||
accelerator.print(f"Failed to push to hub")
|
||||
|
||||
|
||||
if config["num_epochs"] > 1:
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(
|
||||
f"{config['output_dir']}/epoch_{epoch}",
|
||||
f"{config['output_dir']}/final",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(
|
||||
f"{config['output_dir']}/final",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user