mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
small edits and placeholder gif (#2513)
* small edits and placeholder gif Signed-off-by: Max Cembalest <max@nomic.ai> * jul2 docs updates Signed-off-by: Max Cembalest <max@nomic.ai> * added video Signed-off-by: mcembalest <70534565+mcembalest@users.noreply.github.com> Signed-off-by: Max Cembalest <max@nomic.ai> * quantization nits Signed-off-by: Max Cembalest <max@nomic.ai> --------- Signed-off-by: Max Cembalest <max@nomic.ai> Signed-off-by: mcembalest <70534565+mcembalest@users.noreply.github.com>
This commit is contained in:
parent
b7d1b938cc
commit
69102a2859
45
README.md
45
README.md
@ -2,6 +2,7 @@
|
||||
|
||||
<p align="center">GPT4All runs large language models (LLMs) privately on everyday desktops & laptops. <br> <br> No API calls or GPUs required - you can just download the application and <a href="https://docs.gpt4all.io/gpt4all_desktop/quickstart.html#quickstart">get started</a>
|
||||
|
||||
https://github.com/nomic-ai/gpt4all/assets/70534565/513a0f15-4964-4109-89e4-4f9a9011f311
|
||||
|
||||
<p align="center">
|
||||
<a href="https://gpt4all.io/installers/gpt4all-installer-win64.exe">
|
||||
@ -12,15 +13,15 @@
|
||||
|
||||
<p align="center">
|
||||
<a href="https://gpt4all.io/installers/gpt4all-installer-darwin.dmg">
|
||||
<img src="gpt4all-bindings/python/docs/assets/mac.png" width="80" height="90"><br>
|
||||
<img src="gpt4all-bindings/python/docs/assets/mac.png" width="85" height="100"><br>
|
||||
Download for MacOS
|
||||
</a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://gpt4all.io/installers/gpt4all-installer-linux.run">
|
||||
<img src="gpt4all-bindings/python/docs/assets/linux.png" width="80" height="80"><br>
|
||||
Download for Linux
|
||||
<img src="gpt4all-bindings/python/docs/assets/ubuntu.svg" width="120" height="120"><br>
|
||||
Download for Ubuntu
|
||||
</a>
|
||||
</p>
|
||||
|
||||
@ -37,8 +38,6 @@ GPT4All is made possible by our compute partner <a href="https://www.paperspace.
|
||||
<a href="https://www.phorm.ai/query?projectId=755eecd3-24ad-49cc-abf4-0ab84caacf63"><img src="https://img.shields.io/badge/Phorm-Ask_AI-%23F2777A.svg" alt="phorm.ai"></a>
|
||||
</p>
|
||||
|
||||
|
||||
|
||||
## Install GPT4All Python
|
||||
|
||||
`gpt4all` gives you access to LLMs with our Python client around [`llama.cpp`](https://github.com/ggerganov/llama.cpp) implementations.
|
||||
@ -57,10 +56,17 @@ with model.chat_session():
|
||||
```
|
||||
|
||||
|
||||
### Release History
|
||||
## Integrations
|
||||
|
||||
:parrot::link: [Langchain](https://python.langchain.com/v0.2/docs/integrations/providers/gpt4all/)
|
||||
:card_file_box: [Weaviate Vector Database](https://github.com/weaviate/weaviate) - [module docs](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/text2vec-gpt4all)
|
||||
:telescope: [OpenLIT (OTel-native Monitoring)](https://github.com/openlit/openlit) - [Docs](https://docs.openlit.io/latest/integrations/gpt4all)
|
||||
|
||||
## Release History
|
||||
- **July 2nd, 2024**: V3.0.0 Release
|
||||
- New UI/UX: fresh redesign of the chat application GUI and user experience
|
||||
- LocalDocs: bring information from files on-device into chats
|
||||
- Fresh redesign of the chat application UI
|
||||
- Improved user workflow for LocalDocs
|
||||
- Expanded access to more model architectures
|
||||
- **October 19th, 2023**: GGUF Support Launches with Support for:
|
||||
- Mistral 7b base model, an updated model gallery on [gpt4all.io](https://gpt4all.io), several new local code models including Rift Coder v1.5
|
||||
- [Nomic Vulkan](https://blog.nomic.ai/posts/gpt4all-gpu-inference-with-vulkan) support for Q4\_0 and Q4\_1 quantizations in GGUF.
|
||||
@ -71,13 +77,6 @@ with model.chat_session():
|
||||
|
||||
[Docker-based API server]: https://github.com/nomic-ai/gpt4all/tree/cef74c2be20f5b697055d5b8b506861c7b997fab/gpt4all-api
|
||||
|
||||
### Integrations
|
||||
|
||||
* :parrot::link: [Langchain](https://python.langchain.com/v0.2/docs/integrations/providers/gpt4all/)
|
||||
* :card_file_box: [Weaviate Vector Database](https://github.com/weaviate/weaviate) - [module docs](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/text2vec-gpt4all)
|
||||
* :telescope: [OpenLIT (OTel-native Monitoring)](https://github.com/openlit/openlit) - [Docs](https://docs.openlit.io/latest/integrations/gpt4all)
|
||||
|
||||
|
||||
## Contributing
|
||||
GPT4All welcomes contributions, involvement, and discussion from the open source community!
|
||||
Please see CONTRIBUTING.md and follow the issues, bug reports, and PR markdown templates.
|
||||
@ -86,22 +85,6 @@ Check project discord, with project owners, or through existing issues/PRs to av
|
||||
Please make sure to tag all of the above with relevant project identifiers or your contribution could potentially get lost.
|
||||
Example tags: `backend`, `bindings`, `python-bindings`, `documentation`, etc.
|
||||
|
||||
|
||||
## Technical Reports
|
||||
|
||||
<p align="center">
|
||||
<a href="https://gpt4all.io/reports/GPT4All_Technical_Report_3.pdf">:green_book: Technical Report 3: GPT4All Snoozy and Groovy </a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://static.nomic.ai/gpt4all/2023_GPT4All-J_Technical_Report_2.pdf">:green_book: Technical Report 2: GPT4All-J </a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://s3.amazonaws.com/static.nomic.ai/gpt4all/2023_GPT4All_Technical_Report.pdf">:green_book: Technical Report 1: GPT4All</a>
|
||||
</p>
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
If you utilize this repository, models or data in a downstream project, please consider citing it with:
|
||||
|
5
gpt4all-bindings/python/docs/assets/ubuntu.svg
Normal file
5
gpt4all-bindings/python/docs/assets/ubuntu.svg
Normal file
@ -0,0 +1,5 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="285" height="285" viewBox="-142.5 -142.5 285 285" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<circle fill="#FFFFFF" r="141.732"/><g id="U" fill="#DD4814"><circle cx="-96.3772" r="18.9215"/>
|
||||
<path d="M-45.6059,68.395C-62.1655,57.3316-74.4844,40.4175-79.6011,20.6065-73.623,15.7354-69.8047,8.3164-69.8047,0-69.8047-8.3164-73.623-15.7354-79.6011-20.6065-74.4844-40.4175-62.1655-57.3316-45.6059-68.395L-31.7715-45.2212C-45.9824-35.2197-55.2754-18.7026-55.2754,0-55.2754,18.7026-45.9824,35.2197-31.7715,45.2212Z"/></g>
|
||||
<use xlink:href="#U" transform="rotate(120)"/><use xlink:href="#U" transform="rotate(240)"/></svg>
|
After Width: | Height: | Size: 700 B |
@ -56,13 +56,13 @@ Many LLMs are available at various sizes, quantizations, and licenses.
|
||||
|
||||
Here are a few examples:
|
||||
|
||||
| Model| Filesize| RAM Required| Parameters| Developer| License| MD5 Sum (Unique Hash)|
|
||||
|------|---------|-------------|-----------|----------|--------|----------------------|
|
||||
| Llama 3 Instruct | 4.66 GB| 8 GB| 8 Billion| Meta| [Llama 3 License](https://llama.meta.com/llama3/license/)| c87ad09e1e4c8f9c35a5fcef52b6f1c9|
|
||||
| Nous Hermes 2 Mistral DPO| 4.21 GB| 8 GB| 7 Billion| Mistral & Nous Research | [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)| Coa5f6b4eabd3992da4d7fb7f020f921eb|
|
||||
| Phi-3 Mini Instruct | 2.03 GB| 4 GB| 4 billion| Microsoft| [MIT](https://opensource.org/license/mit)| f8347badde9bfc2efbe89124d78ddaf5|
|
||||
| Mini Orca (Small)| 1.84 GB| 4 GB| 3 billion| Microsoft | [CC-BY-NC-SA-4.0](https://spdx.org/licenses/CC-BY-NC-SA-4.0)| 0e769317b90ac30d6e09486d61fefa26|
|
||||
| GPT4All Snoozy| 7.36 GB| 16 GB| 13 billion| Nomic AI| [GPL](https://www.gnu.org/licenses/gpl-3.0.en.html)| 40388eb2f8d16bb5d08c96fdfaac6b2c|
|
||||
| Model| Filesize| RAM Required| Parameters| Quantization| Developer| License| MD5 Sum (Unique Hash)|
|
||||
|------|---------|-------------|-----------|-------------|----------|--------|----------------------|
|
||||
| Llama 3 Instruct | 4.66 GB| 8 GB| 8 Billion| q4_0| Meta| [Llama 3 License](https://llama.meta.com/llama3/license/)| c87ad09e1e4c8f9c35a5fcef52b6f1c9|
|
||||
| Nous Hermes 2 Mistral DPO| 4.11 GB| 8 GB| 7 Billion| q4_0| Mistral & Nous Research | [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)| Coa5f6b4eabd3992da4d7fb7f020f921eb|
|
||||
| Phi-3 Mini Instruct | 2.18 GB| 4 GB| 4 billion| q4_0| Microsoft| [MIT](https://opensource.org/license/mit)| f8347badde9bfc2efbe89124d78ddaf5|
|
||||
| Mini Orca (Small)| 1.98 GB| 4 GB| 3 billion| q4_0| Microsoft | [CC-BY-NC-SA-4.0](https://spdx.org/licenses/CC-BY-NC-SA-4.0)| 0e769317b90ac30d6e09486d61fefa26|
|
||||
| GPT4All Snoozy| 7.37 GB| 16 GB| 13 billion| q4_0| Nomic AI| [GPL](https://www.gnu.org/licenses/gpl-3.0.en.html)| 40388eb2f8d16bb5d08c96fdfaac6b2c|
|
||||
|
||||
### Search Results
|
||||
|
||||
|
@ -4,17 +4,11 @@
|
||||
|
||||
### Which language models are supported?
|
||||
|
||||
Our backend supports models with a `llama.cpp` implementation which have been uploaded to [HuggingFace](https://huggingface.co/).
|
||||
We support models with a `llama.cpp` implementation which have been uploaded to [HuggingFace](https://huggingface.co/).
|
||||
|
||||
### Which embedding models are supported?
|
||||
|
||||
The following embedding models can be used within the application and with the `Embed4All` class from the `gpt4all` Python library. The default context length as GGUF files is 2048 but can be [extended](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5-GGUF#description).
|
||||
|
||||
| Name | Initializing with `Embed4All` | Context Length | Embedding Length | File Size |
|
||||
|--------------------|------------------------------------------------------|---------------:|-----------------:|----------:|
|
||||
| [SBert](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)| ```pythonemb = Embed4All("all-MiniLM-L6-v2.gguf2.f16.gguf")```| 512 | 384 | 44 MiB |
|
||||
| [Nomic Embed v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1-GGUF) | nomic‑embed‑text‑v1.f16.gguf| 2048 | 768 | 262 MiB |
|
||||
| [Nomic Embed v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5-GGUF) | nomic‑embed‑text‑v1.5.f16.gguf| 2048 | 64-768 | 262 MiB |
|
||||
We support SBert and Nomic Embed Text v1 & v1.5.
|
||||
|
||||
## Software
|
||||
|
||||
|
@ -23,6 +23,15 @@ Models are loaded by name via the `GPT4All` class. If it's your first time loadi
|
||||
print(model.generate("How can I run LLMs efficiently on my laptop?", max_tokens=1024))
|
||||
```
|
||||
|
||||
| `GPT4All` model name| Filesize| RAM Required| Parameters| Quantization| Developer| License| MD5 Sum (Unique Hash)|
|
||||
|------|---------|-------|-------|-----------|----------|--------|----------------------|
|
||||
| `Meta-Llama-3-8B-Instruct.Q4_0.gguf`| 4.66 GB| 8 GB| 8 Billion| q4_0| Meta| [Llama 3 License](https://llama.meta.com/llama3/license/)| c87ad09e1e4c8f9c35a5fcef52b6f1c9|
|
||||
| `Nous-Hermes-2-Mistral-7B-DPO.Q4_0.gguf`| 4.11 GB| 8 GB| 7 Billion| q4_0| Mistral & Nous Research | [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)| Coa5f6b4eabd3992da4d7fb7f020f921eb|
|
||||
| `Phi-3-mini-4k-instruct.Q4_0.gguf` | 2.18 GB| 4 GB| 3.8 billion| q4_0| Microsoft| [MIT](https://opensource.org/license/mit)| f8347badde9bfc2efbe89124d78ddaf5|
|
||||
| `orca-mini-3b-gguf2-q4_0.gguf`| 1.98 GB| 4 GB| 3 billion| q4_0| Microsoft | [CC-BY-NC-SA-4.0](https://spdx.org/licenses/CC-BY-NC-SA-4.0)| 0e769317b90ac30d6e09486d61fefa26|
|
||||
| `gpt4all-13b-snoozy-q4_0.gguf`| 7.37 GB| 16 GB| 13 billion| q4_0| Nomic AI| [GPL](https://www.gnu.org/licenses/gpl-3.0.en.html)| 40388eb2f8d16bb5d08c96fdfaac6b2c|
|
||||
|
||||
|
||||
## Chat Session Generation
|
||||
|
||||
Most of the language models you will be able to access from HuggingFace have been trained as assistants. This guides language models to not just answer with relevant text, but *helpful* text.
|
||||
@ -75,16 +84,6 @@ If you want your LLM's responses to be helpful in the typical sense, we recommen
|
||||
b = 5
|
||||
```
|
||||
|
||||
## Example Models
|
||||
|
||||
| Model| Filesize| RAM Required| Parameters| Developer| License| MD5 Sum (Unique Hash)|
|
||||
|------|---------|-------------|-----------|----------|--------|----------------------|
|
||||
| `Meta-Llama-3-8B-Instruct.Q4_0.gguf` | 4.66 GB| 8 GB| 8 Billion| Meta| [Llama 3 License](https://llama.meta.com/llama3/license/)| c87ad09e1e4c8f9c35a5fcef52b6f1c9|
|
||||
| Nous Hermes 2 Mistral DPO| 4.21 GB| 8 GB| 7 Billion| Mistral & Nous Research | [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)| Coa5f6b4eabd3992da4d7fb7f020f921eb|
|
||||
| Phi-3 Mini Instruct | 2.03 GB| 4 GB| 4 billion| Microsoft| [MIT](https://opensource.org/license/mit)| f8347badde9bfc2efbe89124d78ddaf5|
|
||||
| Mini Orca (Small)| 1.84 GB| 4 GB| 3 billion| Microsoft | [CC-BY-NC-SA-4.0](https://spdx.org/licenses/CC-BY-NC-SA-4.0)| 0e769317b90ac30d6e09486d61fefa26|
|
||||
| GPT4All Snoozy| 7.36 GB| 16 GB| 13 billion| Nomic AI| [GPL](https://www.gnu.org/licenses/gpl-3.0.en.html)| 40388eb2f8d16bb5d08c96fdfaac6b2c|
|
||||
|
||||
## Direct Generation
|
||||
|
||||
Directly calling `model.generate()` prompts the model without applying any templates.
|
||||
@ -150,3 +149,11 @@ The easiest way to run the text embedding model locally uses the [`nomic`](https
|
||||
![Nomic embed text local inference](../assets/local_embed.gif)
|
||||
|
||||
To learn more about making embeddings locally with `nomic`, visit our [embeddings guide](https://docs.nomic.ai/atlas/guides/embeddings#local-inference).
|
||||
|
||||
The following embedding models can be used within the application and with the `Embed4All` class from the `gpt4all` Python library. The default context length as GGUF files is 2048 but can be [extended](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5-GGUF#description).
|
||||
|
||||
| Name| Using with `nomic`| `Embed4All` model name| Context Length| # Embedding Dimensions| File Size|
|
||||
|--------------------|-|------------------------------------------------------|---------------:|-----------------:|----------:|
|
||||
| [Nomic Embed v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1-GGUF) | ```embed.text(strings, model="nomic-embed-text-v1", inference_mode="local")```| ```Embed4All("nomic-embed-text-v1.f16.gguf")```| 2048 | 768 | 262 MiB |
|
||||
| [Nomic Embed v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5-GGUF) | ```embed.text(strings, model="nomic-embed-text-v1.5", inference_mode="local")```| ```Embed4All("nomic-embed-text-v1.5.f16.gguf")``` | 2048| 64-768 | 262 MiB |
|
||||
| [SBert](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)| n/a| ```Embed4All("all-MiniLM-L6-v2.gguf2.f16.gguf")```| 512 | 384 | 44 MiB |
|
||||
|
@ -1,6 +1,18 @@
|
||||
## Training GPT4All-J
|
||||
|
||||
Please see [GPT4All-J Technical Report](https://static.nomic.ai/gpt4all/2023_GPT4All-J_Technical_Report_2.pdf) for details.
|
||||
### Technical Reports
|
||||
|
||||
<p align="center">
|
||||
<a href="https://gpt4all.io/reports/GPT4All_Technical_Report_3.pdf">:green_book: Technical Report 3: GPT4All Snoozy and Groovy </a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://static.nomic.ai/gpt4all/2023_GPT4All-J_Technical_Report_2.pdf">:green_book: Technical Report 2: GPT4All-J </a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://s3.amazonaws.com/static.nomic.ai/gpt4all/2023_GPT4All_Technical_Report.pdf">:green_book: Technical Report 1: GPT4All</a>
|
||||
</p>
|
||||
|
||||
### GPT4All-J Training Data
|
||||
|
||||
|
@ -11,15 +11,15 @@ Each item should have an issue link below.
|
||||
- [ ] Portuguese
|
||||
- [ ] Your native language here.
|
||||
- UI Redesign: an internal effort at Nomic to improve the UI/UX of gpt4all for all users.
|
||||
- [ ] Design new user interface and gather community feedback
|
||||
- [ ] Implement the new user interface and experience.
|
||||
- [x] Design new user interface and gather community feedback
|
||||
- [x] Implement the new user interface and experience.
|
||||
- Installer and Update Improvements
|
||||
- [ ] Seamless native installation and update process on OSX
|
||||
- [ ] Seamless native installation and update process on Windows
|
||||
- [ ] Seamless native installation and update process on Linux
|
||||
- Model discoverability improvements:
|
||||
- [x] Support huggingface model discoverability
|
||||
- [ ] Support Nomic hosted model discoverability
|
||||
- [x] Support Nomic hosted model discoverability
|
||||
- LocalDocs (towards a local perplexity)
|
||||
- Multilingual LocalDocs Support
|
||||
- [ ] Create a multilingual experience
|
||||
|
Loading…
Reference in New Issue
Block a user