metrics run on configs now

This commit is contained in:
bstadt 2023-03-28 00:09:47 +00:00
parent d5769d7614
commit 4e8e7e7300
5 changed files with 54 additions and 33 deletions

View File

@ -5,7 +5,7 @@ lora: true
lora_path: "nomic-ai/vicuna-lora-1024"
max_new_tokens: 512
temperature: .25
temperature: 0.001
prompt: |
#this code prints a string reversed
my_string = "hello how are you"

View File

@ -4,7 +4,7 @@ tokenizer_name: "zpn/llama-7b"
max_new_tokens: 512
temperature: 0
temperature: 0.001
prompt: |
#this code prints a string reversed
my_string = "hello how are you"

View File

@ -4,7 +4,7 @@ tokenizer_name: "zpn/llama-7b"
max_new_tokens: 512
temperature: 0
temperature: 0.001
prompt: |
#this code prints a string reversed
my_string = "hello how are you"

View File

@ -1,6 +1,8 @@
import json
import torch
import pickle
import numpy as np
from tqdm import tqdm
from read import read_config
from argparse import ArgumentParser
from peft import PeftModelForCausalLM
@ -22,7 +24,7 @@ def setup_model(config):
if added_tokens > 0:
model.resize_token_embeddings(len(tokenizer))
if config["lora"]:
if 'lora' in config and config['lora']:
model = PeftModelForCausalLM.from_pretrained(model, config["lora_path"], device_map="auto", torch_dtype=torch.float16, return_hidden_states=True)
model.to(dtype=torch.float16)
@ -33,10 +35,8 @@ def setup_model(config):
def eval_example(model, tokenizer, example, config):
#set up data
prompt = example['instruction'] + ' ' + example['instances'][0]['input']
gt = prompt + ' ' + example['instances'][0]['output']
@ -45,29 +45,40 @@ def eval_example(model, tokenizer, example, config):
input = {k: v.to(model.device) for k, v in input.items()}
continuations = []
tokenized_continuations = []
trajectories = []
for i in range(5):
print(i)
outputs = model.generate(input_ids=input['input_ids'],
max_new_tokens=config["max_new_tokens"],
temperature=config["temperature"])
for i in range(3):
with torch.no_grad():
outputs = model.generate(input_ids=input['input_ids'],
max_new_tokens=config["max_new_tokens"],
min_new_tokens=5,
temperature=config["temperature"],
repetition_penalty=1.0,
do_sample=True)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
y = model(input_ids=outputs)
y = model(input_ids=outputs)
trajectory = y.hidden_states[0].detach().cpu().numpy()[0]
trajectory = trajectory / np.linalg.norm(trajectory, axis=1, keepdims=True)
trajectory = np.cumsum(trajectory, axis=0) / np.arange(1, trajectory.shape[0]+1).reshape(-1, 1)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
trajectories.append(trajectory)
continuations.append(decoded[len(prompt):])
continuations.append(decoded)
tokenized_continuations.append(tokenizer.tokenize(decoded))
#compute the ground truth perplexity
gt_input = tokenizer(gt, return_tensors="pt")
gt_input = {k: v.to(model.device) for k, v in gt_input.items()}
nlls = []
prev_end_loc = 0
for begin_loc in tqdm(range(len(prompt), len(gt), 1)):
end_loc = min(begin_loc + max_length, seq_len)
stride = 512
seq_len = gt_input['input_ids'].size(1)
for begin_loc in tqdm(range(input['input_ids'].size(1), gt_input['input_ids'].size(1), stride)):
end_loc = min(begin_loc + stride, seq_len)
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
input_ids = input['input_ids'][:, begin_loc:end_loc].to(model.device)
input_ids = gt_input['input_ids'][:, begin_loc:end_loc].to(model.device)
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
@ -80,26 +91,36 @@ def eval_example(model, tokenizer, example, config):
if end_loc == seq_len:
break
ppl = torch.exp(torch.stack(nlls).sum() / end_loc)
ppl = torch.exp(torch.stack(nlls).sum() / end_loc).item()
print('ppl: ', ppl)
print('perplexity: ', ppl)
print('trajectories: ', trajectories)
print('continuations: ', continuations)
print(prompt)
print(80*'-')
for continuation in continuations:
print(continuation)
print(80*'-')
raise
return ppl, trajectories, continuations
return ppl, trajectories, continuations, tokenized_continuations
def do_eval(config):
eval_data = read_jsonl_file('eval_data/user_oriented_instructions.jsonl')
model, tokenizer = setup_model(config)
trajectories = []
perplexities = []
continuations = []
for example in eval_data:
gt_perplexity, trajectories, continuations = eval_example(model, tokenizer, example, config)
all_trajectories = []
all_perplexities = []
all_continuations = []
all_tokenized_continuations = []
for example in tqdm(eval_data):
gt_perplexity, trajectories, continuations, tokenized_continuations = eval_example(model, tokenizer, example, config)
all_trajectories.append(trajectories)
all_perplexities.append(gt_perplexity)
all_continuations.append(continuations)
with open('eval_data/eval__model-{}__lora-{}.pkl'.format(config['model_name'].replace('/', '_'), config['lora_path'].replace('/', '_')), 'wb') as f:
r = {'trajectories': all_trajectories,
'perplexities': all_perplexities,
'continuations': all_continuations,
'tokenized_continuations': all_tokenized_continuations}
pickle.dump(r, f)
if __name__ == '__main__':