mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
Merge pull request #537 from nomic-ai/fix_mpt_ggml
fix: use right conversion script
This commit is contained in:
commit
3ea716a73b
@ -76,24 +76,32 @@ fout = open(fname_out, "wb")
|
||||
vocab = tokenizer.vocab
|
||||
|
||||
hparams["multiple_of"] = 1
|
||||
fout.write(struct.pack("i", 0x67676d6d)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
fout.write(struct.pack("i", hparams["max_seq_len"]))
|
||||
fout.write(struct.pack("i", hparams["d_model"]))
|
||||
fout.write(struct.pack("i", hparams["n_heads"]))
|
||||
fout.write(struct.pack("i", hparams["n_layers"]))
|
||||
# n_rot (unused)
|
||||
fout.write(struct.pack("i", 0))
|
||||
fout.write(struct.pack("i", ftype))
|
||||
fout.write(struct.pack("I", 0x67676d6d)) # magic: ggml in hex
|
||||
fout.write(struct.pack("I", model.config.vocab_size))
|
||||
fout.write(struct.pack("I", model.config.max_seq_len))
|
||||
fout.write(struct.pack("I", model.config.n_layers))
|
||||
fout.write(struct.pack("I", model.config.n_heads))
|
||||
fout.write(struct.pack("I", model.config.d_model))
|
||||
fout.write(struct.pack("f", model.config.attn_config['alibi_bias_max']))
|
||||
clip_qkv = model.config.attn_config['clip_qkv']
|
||||
fout.write(struct.pack("f", clip_qkv if clip_qkv is not None else 0))
|
||||
fout.write(struct.pack("I", ftype))
|
||||
|
||||
# # Is this correct??
|
||||
# dot_token = tokenizer.encode(".")[0]
|
||||
# write tokens to ggml file
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
dot_token = tokenizer.encode('.')[0]
|
||||
fout.write(struct.pack("I", model.config.vocab_size))
|
||||
|
||||
for i in range(hparams["vocab_size"]):
|
||||
text = tokenizer.decode([i]).encode('utf-8')
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
for i in range(model.config.vocab_size):
|
||||
text = tokenizer.decode([dot_token, i]).encode('utf-8')
|
||||
# remove the first byte (it's always '.')
|
||||
text = text[1:]
|
||||
enclen = len(text)
|
||||
if i in tokenizer.all_special_ids:
|
||||
print(f"special token: {text}")
|
||||
enclen = enclen | 1<<31
|
||||
fout.write(struct.pack("I", enclen))
|
||||
fout.write(text)
|
||||
|
||||
list_vars = model.state_dict()
|
||||
@ -101,73 +109,35 @@ for name in list_vars.keys():
|
||||
data = list_vars[name].squeeze().numpy()
|
||||
print("Processing variable: " + name + " with shape: ", data.shape)
|
||||
|
||||
# we don't need these
|
||||
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
|
||||
print(" Skipping variable: " + name)
|
||||
continue
|
||||
n_dims = len(data.shape);
|
||||
|
||||
if "Wqkv.weight" in name:
|
||||
# chunk qkv
|
||||
query, key, value = np.split(data, 3, axis=0)
|
||||
|
||||
new_name = name.split("Wqkv.weight")[0]
|
||||
|
||||
for (data, name) in [(query, new_name + "q_proj.weight"), (key, new_name + "k_proj.weight"), (value, new_name + "v_proj.weight")]:
|
||||
print(f"Processing variable: {name} with shape: {data.shape}")
|
||||
n_dims = len(data.shape);
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype_cur = 0;
|
||||
if ftype != 0:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
# header
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
fout.write(str);
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
else:
|
||||
|
||||
n_dims = len(data.shape);
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype_cur = 0;
|
||||
if ftype != 0:
|
||||
if name[-7:] == ".weight" and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype_cur = 0;
|
||||
if ftype != 0:
|
||||
# Keep token embeddings in fp32
|
||||
if name[-7:] == ".weight" and n_dims == 2 and ".wte" not in name:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
# header
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
fout.write(str);
|
||||
# header
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
fout.write(str);
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
fout.close()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user