mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
convert scripts: use bytes_to_unicode from transformers
This commit is contained in:
parent
a49a1dcdf4
commit
0493e6eb07
@ -27,28 +27,7 @@ from pathlib import Path
|
||||
import gguf
|
||||
import numpy as np
|
||||
from transformers import AutoTokenizer, GPTJConfig, GPTJForCausalLM
|
||||
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
return dict(zip(bs, (chr(n) for n in cs)))
|
||||
from transformers.models.gpt2 import tokenization_gpt2
|
||||
|
||||
|
||||
if not 2 <= len(sys.argv) < 4:
|
||||
@ -100,7 +79,7 @@ print("gguf: get gpt2 tokenizer vocab")
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
byte_encoder = bytes_to_unicode()
|
||||
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
|
@ -18,30 +18,8 @@ from pathlib import Path
|
||||
import gguf
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
|
||||
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
from transformers.models.gpt2 import tokenization_gpt2
|
||||
|
||||
|
||||
if not 3 <= len(sys.argv) < 5:
|
||||
@ -104,7 +82,7 @@ special_ids = tokenizer.all_special_ids
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
added_tokens = tokenizer.get_added_vocab().values()
|
||||
byte_encoder = bytes_to_unicode()
|
||||
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
|
Loading…
Reference in New Issue
Block a user