gpt4all/gpt4all-backend/llamamodel.cpp

411 lines
11 KiB
C++
Raw Normal View History

#define LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "llamamodel_impl.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#if defined(_WIN32) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h>
#else
#include <unistd.h>
#endif
#include <random>
#include <thread>
2023-05-03 11:58:26 -04:00
#include <unordered_set>
#include <llama.h>
#include <ggml.h>
#ifdef GGML_USE_KOMPUTE
#include "ggml-vulkan.h"
#endif
namespace {
const char *modelType_ = "LLaMA";
}
static bool llama_verbose() {
const char* var = getenv("GPT4ALL_VERBOSE_LLAMACPP");
return var && *var;
}
static void llama_log_callback(enum ggml_log_level level, const char *text, void *userdata) {
(void)userdata;
if (llama_verbose() || level <= GGML_LOG_LEVEL_ERROR) {
fputs(text, stderr);
}
}
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
// sampling parameters
float tfs_z = 1.0f; // 1.0 = disabled
float typical_p = 1.0f; // 1.0 = disabled
std::string prompt = "";
bool memory_f16 = true; // use f16 instead of f32 for memory kv
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
};
static int llama_sample_top_p_top_k(
llama_context *ctx,
const llama_token *last_n_tokens_data,
int last_n_tokens_size,
int top_k,
float top_p,
float temp,
float repeat_penalty) {
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
// Populate initial list of all candidates
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Sample repeat penalty
llama_sample_repetition_penalty(nullptr, &candidates_p, last_n_tokens_data, last_n_tokens_size, repeat_penalty);
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, 1.0f, 1);
llama_sample_typical(ctx, &candidates_p, 1.0f, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temperature(ctx, &candidates_p, temp);
return llama_sample_token(ctx, &candidates_p);
}
struct LLamaPrivate {
const std::string modelPath;
bool modelLoaded;
llama_context *ctx = nullptr;
llama_context_params params;
int64_t n_threads = 0;
std::vector<LLModel::Token> end_tokens;
};
LLamaModel::LLamaModel()
: d_ptr(new LLamaPrivate) {
d_ptr->modelLoaded = false;
}
// default hparams (LLaMA 7B)
struct llama_file_hparams {
uint32_t n_vocab = 32000;
uint32_t n_embd = 4096;
uint32_t n_mult = 256;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
};
size_t LLamaModel::requiredMem(const std::string &modelPath) {
auto fin = std::ifstream(modelPath, std::ios::binary);
fin.seekg(0, std::ios_base::end);
size_t filesize = fin.tellg();
fin.seekg(0, std::ios_base::beg);
uint32_t magic = 0;
fin.read(reinterpret_cast<char*>(&magic), sizeof(magic));
if (magic != 0x67676a74) return 0;
uint32_t version = 0;
fin.read(reinterpret_cast<char*>(&version), sizeof(version));
llama_file_hparams hparams;
fin.read(reinterpret_cast<char*>(&hparams.n_vocab), sizeof(hparams.n_vocab));
fin.read(reinterpret_cast<char*>(&hparams.n_embd), sizeof(hparams.n_embd));
fin.read(reinterpret_cast<char*>(&hparams.n_head), sizeof(hparams.n_head));
fin.read(reinterpret_cast<char*>(&hparams.n_layer), sizeof(hparams.n_layer));
fin.read(reinterpret_cast<char*>(&hparams.n_rot), sizeof(hparams.n_rot));
fin.read(reinterpret_cast<char*>(&hparams.ftype), sizeof(hparams.ftype));
const size_t n_ctx = 2048;
const size_t kvcache_element_size = 2; // fp16
const size_t est_kvcache_size = hparams.n_embd * hparams.n_layer * 2u * n_ctx * kvcache_element_size;
return filesize + est_kvcache_size;
}
bool LLamaModel::loadModel(const std::string &modelPath)
{
// load the model
d_ptr->params = llama_context_default_params();
gpt_params params;
d_ptr->params.n_ctx = 2048;
d_ptr->params.seed = params.seed;
d_ptr->params.f16_kv = params.memory_f16;
d_ptr->params.use_mmap = params.use_mmap;
#if defined (__APPLE__)
d_ptr->params.use_mlock = true;
#else
d_ptr->params.use_mlock = params.use_mlock;
#endif
#ifdef GGML_USE_METAL
if (llama_verbose()) {
std::cerr << "llama.cpp: using Metal" << std::endl;
}
// metal always runs the whole model if n_gpu_layers is not 0, at least
// currently
d_ptr->params.n_gpu_layers = 1;
#endif
#ifdef GGML_USE_KOMPUTE
if (ggml_vk_has_device()) {
// vulkan always runs the whole model if n_gpu_layers is not 0, at least
// currently
d_ptr->params.n_gpu_layers = 1;
}
#endif
d_ptr->ctx = llama_init_from_file(modelPath.c_str(), d_ptr->params);
if (!d_ptr->ctx) {
2023-09-14 16:52:31 -04:00
#ifdef GGML_USE_KOMPUTE
// Explicitly free the device so next load it doesn't use it
ggml_vk_free_device();
#endif
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
return false;
}
d_ptr->end_tokens = {llama_token_eos(d_ptr->ctx)};
#ifdef GGML_USE_KOMPUTE
if (ggml_vk_has_device()) {
std::cerr << "llama.cpp: using Vulkan on " << ggml_vk_current_device().name << std::endl;
}
#endif
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
fflush(stderr);
return true;
}
void LLamaModel::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
}
int32_t LLamaModel::threadCount() const {
return d_ptr->n_threads;
}
LLamaModel::~LLamaModel()
{
2023-09-14 16:52:31 -04:00
if (d_ptr->ctx) {
llama_free(d_ptr->ctx);
}
}
bool LLamaModel::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t LLamaModel::stateSize() const
{
return llama_get_state_size(d_ptr->ctx);
}
size_t LLamaModel::saveState(uint8_t *dest) const
{
return llama_copy_state_data(d_ptr->ctx, dest);
}
size_t LLamaModel::restoreState(const uint8_t *src)
{
// const_cast is required, see: https://github.com/ggerganov/llama.cpp/pull/1540
return llama_set_state_data(d_ptr->ctx, const_cast<uint8_t*>(src));
}
std::vector<LLModel::Token> LLamaModel::tokenize(PromptContext &ctx, const std::string &str) const
{
const bool useBOS = ctx.n_past == 0 && (ctx.tokens.empty() || ctx.tokens.front() != llama_token_bos(d_ptr->ctx));
std::vector<LLModel::Token> fres(str.size()+4);
auto fres_len = llama_tokenize(d_ptr->ctx, str.c_str(), str.length(), fres.data(), fres.size(), useBOS);
fres.resize(fres_len);
return fres;
}
std::string LLamaModel::tokenToString(Token id) const
{
return llama_token_to_str(d_ptr->ctx, id);
}
LLModel::Token LLamaModel::sampleToken(PromptContext &promptCtx) const
{
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return llama_sample_top_p_top_k(d_ptr->ctx,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
promptCtx.repeat_penalty);
}
bool LLamaModel::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
return llama_eval(d_ptr->ctx, tokens.data(), tokens.size(), ctx.n_past, d_ptr->n_threads) == 0;
}
int32_t LLamaModel::contextLength() const
{
return llama_n_ctx(d_ptr->ctx);
}
const std::vector<LLModel::Token> &LLamaModel::endTokens() const
{
return d_ptr->end_tokens;
}
#if defined(GGML_USE_KOMPUTE)
#include "ggml-vulkan.h"
#endif
std::vector<LLModel::GPUDevice> LLamaModel::availableGPUDevices(size_t memoryRequired)
{
#if defined(GGML_USE_KOMPUTE)
std::vector<ggml_vk_device> vkDevices = ggml_vk_available_devices(memoryRequired);
std::vector<LLModel::GPUDevice> devices;
for(const auto& vkDevice : vkDevices) {
LLModel::GPUDevice device;
device.index = vkDevice.index;
device.type = vkDevice.type;
device.heapSize = vkDevice.heapSize;
device.name = vkDevice.name;
device.vendor = vkDevice.vendor;
devices.push_back(device);
}
return devices;
#else
return std::vector<LLModel::GPUDevice>();
#endif
}
bool LLamaModel::initializeGPUDevice(size_t memoryRequired, const std::string& device)
{
#if defined(GGML_USE_KOMPUTE)
return ggml_vk_init_device(memoryRequired, device);
#else
return false;
#endif
}
bool LLamaModel::initializeGPUDevice(const LLModel::GPUDevice &device, std::string *unavail_reason)
{
bool result = false;
#if defined(GGML_USE_KOMPUTE)
ggml_vk_device vkDevice;
vkDevice.index = device.index;
vkDevice.type = device.type;
vkDevice.heapSize = device.heapSize;
vkDevice.name = device.name;
vkDevice.vendor = device.vendor;
result = ggml_vk_init_device(vkDevice);
if (!result && unavail_reason) {
2023-10-06 11:30:55 -04:00
*unavail_reason = "failed to init GPU";
}
#else
if (unavail_reason) {
2023-10-06 11:30:55 -04:00
*unavail_reason = "built without Kompute";
}
#endif
return result;
}
bool LLamaModel::initializeGPUDevice(int device)
{
#if defined(GGML_USE_KOMPUTE)
return ggml_vk_init_device(device);
#else
return false;
#endif
}
bool LLamaModel::hasGPUDevice()
{
#if defined(GGML_USE_KOMPUTE)
return ggml_vk_has_device();
#else
return false;
#endif
}
bool LLamaModel::usingGPUDevice()
{
#if defined(GGML_USE_KOMPUTE)
return ggml_vk_using_vulkan();
#elif defined(GGML_USE_METAL)
return true;
#endif
return false;
}
std::string get_arch_name(gguf_context *ctx_gguf) {
std::string arch_name;
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid);
if (ktype != (GGUF_TYPE_STRING)) {
throw std::runtime_error("ERROR: Can't get general architecture from gguf file.");
}
return gguf_get_val_str(ctx_gguf, kid);
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(const char * fname) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
gguf_context *ctx_gguf = gguf_init_from_file(fname, params);
if (!ctx_gguf)
return false;
2023-10-27 17:07:23 -04:00
bool isValid = gguf_get_version(ctx_gguf) <= 3;
auto arch = get_arch_name(ctx_gguf);
isValid = isValid && (arch == "llama" || arch == "starcoder" || arch == "falcon" || arch == "mpt");
gguf_free(ctx_gguf);
return isValid;
}
DLL_EXPORT LLModel *construct() {
llama_log_set(llama_log_callback, nullptr);
return new LLamaModel;
}
}