gpt4all/gpt4all-backend/scripts/convert_mpt_hf_to_ggml.py

175 lines
5.7 KiB
Python
Raw Normal View History

2023-05-06 15:37:25 -04:00
# Convert Hugging Face fine-tuned bloom-like models to ggml format
#
# Usage:
#
# python3 models/convert-h5-to-ggml.py
#
# This script is similar to "convert-pt-to-ggml.py"
#
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 3:
print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]")
print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
print(" dir-output: directory where the output file will be written")
print(" use-f32: if present, use float32 instead of float16")
sys.exit(1)
model_name = sys.argv[1]
dir_out = sys.argv[2]
# make sure the output directory exists
os.makedirs(dir_out, exist_ok=True)
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 3:
ftype = 0
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
hparams = config.to_dict()
print("Loading model: ", model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True)
print("Model loaded: ", model_name)
fname_out = dir_out + f"/ggml-model-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin"
fout = open(fname_out, "wb")
2023-05-07 18:18:04 -04:00
vocab = tokenizer.vocab
2023-05-06 15:37:25 -04:00
hparams["multiple_of"] = 1
2023-05-07 18:18:04 -04:00
fout.write(struct.pack("i", 0x67676d6d)) # magic: ggml in hex
2023-05-06 15:37:25 -04:00
fout.write(struct.pack("i", hparams["vocab_size"]))
2023-05-07 18:18:04 -04:00
fout.write(struct.pack("i", hparams["max_seq_len"]))
2023-05-06 15:37:25 -04:00
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
2023-05-07 18:18:04 -04:00
# n_rot (unused)
fout.write(struct.pack("i", 0))
2023-05-06 15:37:25 -04:00
fout.write(struct.pack("i", ftype))
# # Is this correct??
# dot_token = tokenizer.encode(".")[0]
2023-05-07 18:18:04 -04:00
# write tokens to ggml file
fout.write(struct.pack("i", hparams["vocab_size"]))
for i in range(hparams["vocab_size"]):
text = tokenizer.decode([i]).encode('utf-8')
fout.write(struct.pack("i", len(text)))
fout.write(text)
2023-05-06 15:37:25 -04:00
list_vars = model.state_dict()
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable: " + name + " with shape: ", data.shape)
# we don't need these
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
print(" Skipping variable: " + name)
continue
if "Wqkv.weight" in name:
# chunk qkv
query, key, value = np.split(data, 3, axis=0)
new_name = name.split("Wqkv.weight")[0]
2023-05-07 18:18:04 -04:00
for (data, name) in [(query, new_name + "q_proj.weight"), (key, new_name + "k_proj.weight"), (value, new_name + "v_proj.weight")]:
2023-05-06 15:37:25 -04:00
print(f"Processing variable: {name} with shape: {data.shape}")
n_dims = len(data.shape);
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0;
if ftype != 0:
2023-05-07 18:18:04 -04:00
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
2023-05-06 15:37:25 -04:00
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
# data
data.tofile(fout)
else:
n_dims = len(data.shape);
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0;
if ftype != 0:
if name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("")