gpt4all/gpt4all-backend/llamamodel.cpp

543 lines
16 KiB
C++
Raw Normal View History

#define LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "llamamodel_impl.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#if defined(_WIN32) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h>
#else
#include <unistd.h>
#endif
#include <random>
#include <thread>
2023-05-03 11:58:26 -04:00
#include <unordered_set>
#include <llama.h>
#include <ggml.h>
#ifdef GGML_USE_KOMPUTE
#include "ggml-kompute.h"
#endif
// Maximum supported GGUF version
static constexpr int GGUF_VER_MAX = 3;
namespace {
const char *modelType_ = "LLaMA";
}
static bool llama_verbose() {
const char* var = getenv("GPT4ALL_VERBOSE_LLAMACPP");
return var && *var;
}
static void llama_log_callback(enum ggml_log_level level, const char *text, void *userdata) {
(void)userdata;
if (llama_verbose() || level <= GGML_LOG_LEVEL_ERROR) {
fputs(text, stderr);
}
}
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
// sampling parameters
float tfs_z = 1.0f; // 1.0 = disabled
float typical_p = 1.0f; // 1.0 = disabled
std::string prompt = "";
enum ggml_type kv_type = GGML_TYPE_F16; // use f16 instead of f32 for memory kv
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
};
static int llama_sample_top_p_top_k(
llama_context *ctx,
const llama_token *last_n_tokens_data,
int last_n_tokens_size,
int top_k,
float top_p,
float temp,
2023-12-01 16:51:15 -05:00
float repeat_penalty,
int32_t pos) {
auto logits = llama_get_logits_ith(ctx, pos);
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
// Populate initial list of all candidates
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Sample repeat penalty
2023-12-01 16:51:15 -05:00
llama_sample_repetition_penalties(nullptr, &candidates_p, last_n_tokens_data, last_n_tokens_size, repeat_penalty, 0.0f, 0.0f);
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, 1.0f, 1);
llama_sample_typical(ctx, &candidates_p, 1.0f, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
2023-12-01 16:51:15 -05:00
llama_sample_temp(ctx, &candidates_p, temp);
return llama_sample_token(ctx, &candidates_p);
}
struct LLamaPrivate {
const std::string modelPath;
bool modelLoaded;
int device = -1;
2023-12-01 16:51:15 -05:00
llama_model *model = nullptr;
llama_context *ctx = nullptr;
2023-12-01 16:51:15 -05:00
llama_model_params model_params;
llama_context_params ctx_params;
int64_t n_threads = 0;
std::vector<LLModel::Token> end_tokens;
};
LLamaModel::LLamaModel()
: d_ptr(new LLamaPrivate) {
d_ptr->modelLoaded = false;
}
// default hparams (LLaMA 7B)
struct llama_file_hparams {
uint32_t n_vocab = 32000;
uint32_t n_embd = 4096;
uint32_t n_mult = 256;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
};
size_t LLamaModel::requiredMem(const std::string &modelPath, int n_ctx, int ngl) {
// TODO(cebtenzzre): update to GGUF
(void)ngl; // FIXME(cetenzzre): use this value
auto fin = std::ifstream(modelPath, std::ios::binary);
fin.seekg(0, std::ios_base::end);
size_t filesize = fin.tellg();
fin.seekg(0, std::ios_base::beg);
uint32_t magic = 0;
fin.read(reinterpret_cast<char*>(&magic), sizeof(magic));
if (magic != 0x67676a74) return 0;
uint32_t version = 0;
fin.read(reinterpret_cast<char*>(&version), sizeof(version));
llama_file_hparams hparams;
fin.read(reinterpret_cast<char*>(&hparams.n_vocab), sizeof(hparams.n_vocab));
fin.read(reinterpret_cast<char*>(&hparams.n_embd), sizeof(hparams.n_embd));
fin.read(reinterpret_cast<char*>(&hparams.n_head), sizeof(hparams.n_head));
fin.read(reinterpret_cast<char*>(&hparams.n_layer), sizeof(hparams.n_layer));
fin.read(reinterpret_cast<char*>(&hparams.n_rot), sizeof(hparams.n_rot));
fin.read(reinterpret_cast<char*>(&hparams.ftype), sizeof(hparams.ftype));
const size_t kvcache_element_size = 2; // fp16
const size_t est_kvcache_size = hparams.n_embd * hparams.n_layer * 2u * n_ctx * kvcache_element_size;
return filesize + est_kvcache_size;
}
bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
{
d_ptr->modelLoaded = false;
// clean up after previous loadModel()
if (d_ptr->model) {
llama_free_model(d_ptr->model);
d_ptr->model = nullptr;
}
if (d_ptr->ctx) {
llama_free(d_ptr->ctx);
d_ptr->ctx = nullptr;
}
2023-12-01 16:51:15 -05:00
if (n_ctx < 8) {
std::cerr << "warning: minimum context size is 8, using minimum size.\n";
n_ctx = 8;
}
// -- load the model --
gpt_params params;
2023-12-01 16:51:15 -05:00
d_ptr->model_params = llama_model_default_params();
d_ptr->model_params.use_mmap = params.use_mmap;
#if defined (__APPLE__)
d_ptr->model_params.use_mlock = true;
#else
d_ptr->model_params.use_mlock = params.use_mlock;
#endif
2023-12-01 16:51:15 -05:00
d_ptr->model_params.progress_callback = &LLModel::staticProgressCallback;
d_ptr->model_params.progress_callback_user_data = this;
#ifdef GGML_USE_METAL
if (llama_verbose()) {
std::cerr << "llama.cpp: using Metal" << std::endl;
}
// always fully offload on Metal
// TODO(cebtenzzre): use this parameter to allow using more than 53% of system RAM to load a model
d_ptr->model_params.n_gpu_layers = 100;
#elif defined(GGML_USE_KOMPUTE)
if (d_ptr->device != -1) {
d_ptr->model_params.main_gpu = d_ptr->device;
d_ptr->model_params.n_gpu_layers = ngl;
}
#endif
2023-12-01 16:51:15 -05:00
d_ptr->model = llama_load_model_from_file_gpt4all(modelPath.c_str(), &d_ptr->model_params);
if (!d_ptr->model) {
fflush(stdout);
d_ptr->device = -1;
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
return false;
}
const int n_ctx_train = llama_n_ctx_train(d_ptr->model);
if (n_ctx > n_ctx_train) {
std::cerr << "warning: model was trained on only " << n_ctx_train << " context tokens ("
<< n_ctx << " specified)\n";
}
// -- initialize the context --
d_ptr->ctx_params = llama_context_default_params();
d_ptr->ctx_params.n_ctx = n_ctx;
d_ptr->ctx_params.seed = params.seed;
d_ptr->ctx_params.type_k = params.kv_type;
d_ptr->ctx_params.type_v = params.kv_type;
// The new batch API provides space for n_vocab*n_tokens logits. Tell llama.cpp early
// that we want this many logits so the state serializes consistently.
d_ptr->ctx_params.logits_all = true;
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->ctx_params.n_threads = d_ptr->n_threads;
d_ptr->ctx_params.n_threads_batch = d_ptr->n_threads;
2023-12-01 16:51:15 -05:00
d_ptr->ctx = llama_new_context_with_model(d_ptr->model, d_ptr->ctx_params);
if (!d_ptr->ctx) {
fflush(stdout);
2023-12-01 16:51:15 -05:00
std::cerr << "LLAMA ERROR: failed to init context for model " << modelPath << std::endl;
llama_free_model(d_ptr->model);
d_ptr->model = nullptr;
d_ptr->device = -1;
2023-12-01 16:51:15 -05:00
return false;
}
d_ptr->end_tokens = {llama_token_eos(d_ptr->model)};
#ifdef GGML_USE_KOMPUTE
if (usingGPUDevice() && ggml_vk_has_device()) {
std::cerr << "llama.cpp: using Vulkan on " << ggml_vk_current_device().name << std::endl;
}
#endif
fflush(stdout);
d_ptr->modelLoaded = true;
return true;
}
void LLamaModel::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
2023-12-01 16:51:15 -05:00
llama_set_n_threads(d_ptr->ctx, n_threads, n_threads);
}
int32_t LLamaModel::threadCount() const {
return d_ptr->n_threads;
}
LLamaModel::~LLamaModel()
{
2023-09-14 16:52:31 -04:00
if (d_ptr->ctx) {
llama_free(d_ptr->ctx);
}
2023-12-01 16:51:15 -05:00
llama_free_model(d_ptr->model);
}
bool LLamaModel::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t LLamaModel::stateSize() const
{
return llama_get_state_size(d_ptr->ctx);
}
size_t LLamaModel::saveState(uint8_t *dest) const
{
return llama_copy_state_data(d_ptr->ctx, dest);
}
size_t LLamaModel::restoreState(const uint8_t *src)
{
// const_cast is required, see: https://github.com/ggerganov/llama.cpp/pull/1540
return llama_set_state_data(d_ptr->ctx, const_cast<uint8_t*>(src));
}
std::vector<LLModel::Token> LLamaModel::tokenize(PromptContext &ctx, const std::string &str) const
{
2023-12-01 16:51:15 -05:00
const bool useBOS = ctx.n_past == 0 && (ctx.tokens.empty() || ctx.tokens.front() != llama_token_bos(d_ptr->model));
std::vector<LLModel::Token> fres(str.size()+4);
2023-12-01 16:51:15 -05:00
// TODO(cebtenzzre): we may want to use special=true here to process special tokens
auto fres_len = llama_tokenize(d_ptr->model, str.c_str(), str.length(), fres.data(), fres.size(), useBOS, false);
fres.resize(fres_len);
return fres;
}
std::string LLamaModel::tokenToString(Token id) const
{
2023-12-01 16:51:15 -05:00
return llama_token_to_piece(d_ptr->ctx, id);
}
LLModel::Token LLamaModel::sampleToken(PromptContext &promptCtx) const
{
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return llama_sample_top_p_top_k(d_ptr->ctx,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
2023-12-01 16:51:15 -05:00
promptCtx.repeat_penalty, promptCtx.n_last_batch_tokens - 1);
}
bool LLamaModel::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
llama_kv_cache_seq_rm(d_ptr->ctx, 0, ctx.n_past, -1);
2023-12-01 16:51:15 -05:00
llama_batch batch = llama_batch_init(tokens.size(), 0, 1);
batch.n_tokens = tokens.size();
ctx.n_last_batch_tokens = tokens.size();
for (int32_t i = 0; i < batch.n_tokens; i++) {
batch.token [i] = tokens[i];
batch.pos [i] = ctx.n_past + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i][0] = 0;
batch.logits [i] = false;
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
int res = llama_decode(d_ptr->ctx, batch);
llama_batch_free(batch);
return res == 0;
}
int32_t LLamaModel::contextLength() const
{
return llama_n_ctx(d_ptr->ctx);
}
const std::vector<LLModel::Token> &LLamaModel::endTokens() const
{
return d_ptr->end_tokens;
}
std::string get_arch_name(gguf_context *ctx_gguf) {
std::string arch_name;
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid);
if (ktype != (GGUF_TYPE_STRING)) {
throw std::runtime_error("ERROR: Can't get general architecture from gguf file.");
}
return gguf_get_val_str(ctx_gguf, kid);
}
static gguf_context *load_gguf(const char *fname, std::string &arch) {
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ nullptr,
};
gguf_context *ctx = gguf_init_from_file(fname, params);
if (!ctx) {
std::cerr << __func__ << ": gguf_init_from_file failed\n";
return nullptr;
}
int gguf_ver = gguf_get_version(ctx);
if (gguf_ver > GGUF_VER_MAX) {
std::cerr << __func__ << ": unsupported gguf version: " << gguf_ver << "\n";
gguf_free(ctx);
return nullptr;
}
arch = get_arch_name(ctx);
return ctx;
}
static int32_t get_arch_key_u32(std::string const &modelPath, std::string const &archKey) {
std::string arch;
auto * ctx = load_gguf(modelPath.c_str(), arch);
int32_t value = -1;
if (ctx) {
auto key = arch + "." + archKey;
int keyidx = gguf_find_key(ctx, key.c_str());
if (keyidx != -1) {
value = gguf_get_val_u32(ctx, keyidx);
} else {
std::cerr << __func__ << ": " << key << "not found in " << modelPath << "\n";
}
}
gguf_free(ctx);
return value;
}
int32_t LLamaModel::maxContextLength(std::string const &modelPath) const
{
return get_arch_key_u32(modelPath, "context_length");
}
int32_t LLamaModel::layerCount(std::string const &modelPath) const
{
return get_arch_key_u32(modelPath, "block_count");
}
std::vector<LLModel::GPUDevice> LLamaModel::availableGPUDevices(size_t memoryRequired) const
{
#ifdef GGML_USE_KOMPUTE
size_t count = 0;
auto * vkDevices = ggml_vk_available_devices(memoryRequired, &count);
if (vkDevices) {
std::vector<LLModel::GPUDevice> devices;
devices.reserve(count);
for (size_t i = 0; i < count; ++i) {
auto & dev = vkDevices[i];
devices.emplace_back(
/* index = */ dev.index,
/* type = */ dev.type,
/* heapSize = */ dev.heapSize,
/* name = */ dev.name,
/* vendor = */ dev.vendor
);
ggml_vk_device_destroy(&dev);
}
free(vkDevices);
return devices;
}
#else
std::cerr << __func__ << ": built without Kompute\n";
#endif
return {};
}
bool LLamaModel::initializeGPUDevice(size_t memoryRequired, const std::string &name) const
{
#if defined(GGML_USE_KOMPUTE)
ggml_vk_device device;
bool ok = ggml_vk_get_device(&device, memoryRequired, name.c_str());
if (ok) {
d_ptr->device = device.index;
return true;
}
#else
(void)memoryRequired;
(void)name;
#endif
return false;
}
bool LLamaModel::initializeGPUDevice(int device, std::string *unavail_reason) const
{
#if defined(GGML_USE_KOMPUTE)
(void)unavail_reason;
d_ptr->device = device;
return true;
#else
(void)device;
if (unavail_reason) {
2023-10-06 11:30:55 -04:00
*unavail_reason = "built without Kompute";
}
return false;
#endif
}
bool LLamaModel::hasGPUDevice()
{
#if defined(GGML_USE_KOMPUTE)
return d_ptr->device != -1;
#else
return false;
#endif
}
bool LLamaModel::usingGPUDevice()
{
#if defined(GGML_USE_KOMPUTE)
return hasGPUDevice() && d_ptr->model_params.n_gpu_layers > 0;
#elif defined(GGML_USE_METAL)
return true;
#else
return false;
#endif
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(const char *fname) {
std::string arch;
auto * ctx = load_gguf(fname, arch);
bool valid = true;
static const std::vector<const char *> known_arches {
"baichuan", "bloom", "codeshell", "falcon", "gpt2", "llama", "mpt", "orion", "persimmon", "phi2", "plamo",
"qwen", "qwen2", "refact", "stablelm", "starcoder"
};
if (std::find(known_arches.begin(), known_arches.end(), arch) == known_arches.end()) {
// not supported by this version of llama.cpp
if (!(arch == "gptj" || arch == "bert")) { // we support these via other modules
std::cerr << __func__ << ": unsupported model architecture: " << arch << "\n";
}
valid = false;
}
gguf_free(ctx);
return valid;
}
DLL_EXPORT LLModel *construct() {
llama_log_set(llama_log_callback, nullptr);
return new LLamaModel;
}
}