gpt4all/gpt4all-backend/llamamodel.cpp

238 lines
6.4 KiB
C++
Raw Normal View History

#define LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "llamamodel_impl.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#if defined(_WIN32) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h>
#else
#include <unistd.h>
#endif
#include <random>
#include <thread>
2023-05-03 11:58:26 -04:00
#include <unordered_set>
#include <llama.h>
#include <ggml.h>
namespace {
const char *modelType_ = "LLaMA";
}
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
#if LLAMA_DATE <= 230511
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
#endif
#if LLAMA_DATE >= 230519
// sampling parameters
float tfs_z = 1.0f; // 1.0 = disabled
float typical_p = 1.0f; // 1.0 = disabled
#endif
std::string prompt = "";
bool memory_f16 = true; // use f16 instead of f32 for memory kv
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
};
#if LLAMA_DATE >= 230519
static int llama_sample_top_p_top_k(
llama_context *ctx,
const llama_token *last_n_tokens_data,
int last_n_tokens_size,
int top_k,
float top_p,
float temp,
float repeat_penalty) {
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
// Populate initial list of all candidates
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Sample repeat penalty
llama_sample_repetition_penalty(nullptr, &candidates_p, last_n_tokens_data, last_n_tokens_size, repeat_penalty);
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, 1.0f, 1);
llama_sample_typical(ctx, &candidates_p, 1.0f, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temperature(ctx, &candidates_p, temp);
return llama_sample_token(ctx, &candidates_p);
}
#endif
struct LLamaPrivate {
const std::string modelPath;
bool modelLoaded;
llama_context *ctx = nullptr;
llama_context_params params;
int64_t n_threads = 0;
};
LLamaModel::LLamaModel()
: d_ptr(new LLamaPrivate) {
d_ptr->modelLoaded = false;
}
bool LLamaModel::loadModel(const std::string &modelPath)
{
// load the model
d_ptr->params = llama_context_default_params();
gpt_params params;
d_ptr->params.n_ctx = 2048;
d_ptr->params.seed = params.seed;
d_ptr->params.f16_kv = params.memory_f16;
d_ptr->params.use_mmap = params.use_mmap;
#if defined (__APPLE__)
d_ptr->params.use_mlock = true;
#else
d_ptr->params.use_mlock = params.use_mlock;
#endif
#if LLAMA_DATE <= 230511
d_ptr->params.n_parts = params.n_parts;
#endif
d_ptr->ctx = llama_init_from_file(modelPath.c_str(), d_ptr->params);
if (!d_ptr->ctx) {
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
return false;
}
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
fflush(stderr);
return true;
}
void LLamaModel::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
}
int32_t LLamaModel::threadCount() const {
return d_ptr->n_threads;
}
LLamaModel::~LLamaModel()
{
llama_free(d_ptr->ctx);
}
bool LLamaModel::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t LLamaModel::stateSize() const
{
return llama_get_state_size(d_ptr->ctx);
}
size_t LLamaModel::saveState(uint8_t *dest) const
{
return llama_copy_state_data(d_ptr->ctx, dest);
}
size_t LLamaModel::restoreState(const uint8_t *src)
{
// const_cast is required, see: https://github.com/ggerganov/llama.cpp/pull/1540
return llama_set_state_data(d_ptr->ctx, const_cast<uint8_t*>(src));
}
std::vector<LLModel::Token> LLamaModel::tokenize(PromptContext &ctx, const std::string &str) const
{
const bool useBOS = ctx.n_past == 0 && (ctx.tokens.empty() || ctx.tokens.front() != llama_token_bos());
std::vector<LLModel::Token> fres(str.size()+4);
auto fres_len = llama_tokenize(d_ptr->ctx, str.c_str(), fres.data(), fres.size(), useBOS);
fres.resize(fres_len);
return fres;
}
std::string_view LLamaModel::tokenToString(Token id) const
{
return llama_token_to_str(d_ptr->ctx, id);
}
LLModel::Token LLamaModel::sampleToken(PromptContext &promptCtx) const
{
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return llama_sample_top_p_top_k(d_ptr->ctx,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
promptCtx.repeat_penalty);
}
bool LLamaModel::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
return llama_eval(d_ptr->ctx, tokens.data(), tokens.size(), ctx.n_past, d_ptr->n_threads) == 0;
}
int32_t LLamaModel::contextLength() const
{
return llama_n_ctx(d_ptr->ctx);
}
const std::vector<LLModel::Token> &LLamaModel::endTokens() const
{
static const std::vector<LLModel::Token> fres = {llama_token_eos()};
return fres;
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(std::istream& f) {
// Check magic
uint32_t magic = 0;
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
if (magic != 0x67676a74) return false;
// Check version
uint32_t version = 0;
f.read(reinterpret_cast<char*>(&version), sizeof(version));
return version LLAMA_VERSIONS;
}
DLL_EXPORT LLModel *construct() {
return new LLamaModel;
}
}