gpt4all/gpt4all-bindings/golang/binding.cpp

105 lines
2.7 KiB
C++
Raw Normal View History

#include "../../gpt4all-backend/llmodel_c.h"
#include "../../gpt4all-backend/llmodel.h"
#include "../../gpt4all-backend/llmodel_c.cpp"
#include "binding.h"
#include <cassert>
#include <cmath>
2023-06-01 08:37:14 -04:00
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <unistd.h>
2023-06-01 10:09:06 -04:00
void* load_model(const char *fname, int n_threads) {
// load the model
2023-06-01 10:09:06 -04:00
llmodel_error new_error{};
auto model = llmodel_model_create2(fname, "auto", &new_error);
if (model == nullptr ){
fprintf(stderr, "%s: error '%s'\n",
__func__, new_error.message);
return nullptr;
}
2023-06-01 10:09:06 -04:00
if (!llmodel_loadModel(model, fname)) {
return nullptr;
}
llmodel_setThreadCount(model, n_threads);
2023-06-01 10:09:06 -04:00
return model;
}
std::string res = "";
void * mm;
2023-06-01 10:09:06 -04:00
void model_prompt( const char *prompt, void *m, char* result, int repeat_last_n, float repeat_penalty, int n_ctx, int tokens, int top_k,
float top_p, float temp, int n_batch,float ctx_erase)
{
llmodel_model* model = (llmodel_model*) m;
// std::string res = "";
auto lambda_prompt = [](int token_id) {
return true;
};
mm=model;
res="";
auto lambda_response = [](int token_id, const char *responsechars) {
res.append((char*)responsechars);
return !!getTokenCallback(mm, (char*)responsechars);
};
auto lambda_recalculate = [](bool is_recalculating) {
// You can handle recalculation requests here if needed
return is_recalculating;
};
llmodel_prompt_context* prompt_context = new llmodel_prompt_context{
.logits = NULL,
.logits_size = 0,
.tokens = NULL,
.tokens_size = 0,
.n_past = 0,
.n_ctx = 1024,
.n_predict = 50,
.top_k = 10,
.top_p = 0.9,
.temp = 1.0,
.n_batch = 1,
.repeat_penalty = 1.2,
.repeat_last_n = 10,
.context_erase = 0.5
};
prompt_context->n_predict = tokens;
prompt_context->repeat_last_n = repeat_last_n;
prompt_context->repeat_penalty = repeat_penalty;
prompt_context->n_ctx = n_ctx;
prompt_context->top_k = top_k;
prompt_context->context_erase = ctx_erase;
prompt_context->top_p = top_p;
prompt_context->temp = temp;
prompt_context->n_batch = n_batch;
llmodel_prompt(model, prompt,
lambda_prompt,
lambda_response,
lambda_recalculate,
prompt_context );
strcpy(result, res.c_str());
free(prompt_context);
}
2023-06-01 10:09:06 -04:00
void free_model(void *state_ptr) {
llmodel_model* ctx = (llmodel_model*) state_ptr;
2023-06-01 08:37:14 -04:00
llmodel_model_destroy(*ctx);
}