gpt4all/gpt4all-backend/utils.h

79 lines
1.9 KiB
C
Raw Normal View History

// Various helper functions and utilities
#pragma once
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
#include "tokenizer/bpe.h"
//
// CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t n_batch = 8; // batch size for prompt processing
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string &token) {
special_tokens.push_back(token);
}
};
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
//
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const size_t actualVocabSize,
const int32_t * last_n_tokens_data,
int last_n_tokens_size,
const std::vector<float> logits,
int top_k,
double top_p,
double temp,
float repeat_penalty,
std::mt19937 & rng);
enum TokenizerType {
MPT, MPT_CHAT, GPTJ
};
void get_bpecpp_tokenizer(const TokenizerType ttype, std::unique_ptr<bpecpp::BPE>& bpe, std::unique_ptr<bpecpp::AdditionalVocabAdapter>& av);