gpt4all/gpt4all-backend/llmodel_shared.cpp

161 lines
6.3 KiB
C++
Raw Normal View History

2023-06-02 10:47:12 -04:00
#include "llmodel.h"
#include <cassert>
#include <iostream>
#include <unordered_set>
2023-06-02 10:47:12 -04:00
void LLModel::recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate) {
size_t i = 0;
promptCtx.n_past = 0;
while (i < promptCtx.tokens.size()) {
size_t batch_end = std::min(i + promptCtx.n_batch, promptCtx.tokens.size());
std::vector<int32_t> batch(promptCtx.tokens.begin() + i, promptCtx.tokens.begin() + batch_end);
assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
if (!evalTokens(promptCtx, batch)) {
std::cerr << "LLModel ERROR: Failed to process prompt\n";
goto stop_generating;
}
promptCtx.n_past += batch.size();
if (!recalculate(true))
goto stop_generating;
i = batch_end;
}
assert(promptCtx.n_past == int32_t(promptCtx.tokens.size()));
stop_generating:
recalculate(false);
}
void LLModel::prompt(const std::string &prompt,
std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx)
{
if (!isModelLoaded()) {
std::cerr << implementation().modelType << " ERROR: prompt won't work with an unloaded model!\n";
return;
}
// tokenize the prompt
std::vector<Token> embd_inp = tokenize(promptCtx, prompt);
// save the context size
promptCtx.n_ctx = contextLength();
if ((int) embd_inp.size() > promptCtx.n_ctx - 4) {
responseCallback(-1, "ERROR: The prompt size exceeds the context window size and cannot be processed.");
std::cerr << implementation().modelType << " ERROR: The prompt is" << embd_inp.size() <<
"tokens and the context window is" << promptCtx.n_ctx << "!\n";
return;
}
promptCtx.n_predict = std::min(promptCtx.n_predict, promptCtx.n_ctx - (int) embd_inp.size());
promptCtx.n_past = std::min(promptCtx.n_past, promptCtx.n_ctx);
2023-06-30 19:13:25 -04:00
promptCtx.n_batch = std::min(promptCtx.n_batch, LLMODEL_MAX_PROMPT_BATCH);
// process the prompt in batches
size_t i = 0;
while (i < embd_inp.size()) {
size_t batch_end = std::min(i + promptCtx.n_batch, embd_inp.size());
std::vector<Token> batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
// Check if the context has run out...
if (promptCtx.n_past + int32_t(batch.size()) > promptCtx.n_ctx) {
const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
// Erase the first percentage of context from the tokens...
std::cerr << implementation().modelType << ": reached the end of the context window so resizing\n";
promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
promptCtx.n_past = promptCtx.tokens.size();
recalculateContext(promptCtx, recalculateCallback);
assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
}
if (!evalTokens(promptCtx, batch)) {
std::cerr << implementation().modelType << " ERROR: Failed to process prompt\n";
return;
}
size_t tokens = batch_end - i;
for (size_t t = 0; t < tokens; ++t) {
if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
promptCtx.tokens.erase(promptCtx.tokens.begin());
promptCtx.tokens.push_back(batch.at(t));
if (!promptCallback(batch.at(t)))
return;
}
promptCtx.n_past += batch.size();
i = batch_end;
}
std::string cachedResponse;
std::vector<Token> cachedTokens;
std::unordered_set<std::string> reversePrompts
= { "### Instruction", "### Prompt", "### Response", "### Human", "### Assistant", "### Context" };
// predict next tokens
for (int i = 0; i < promptCtx.n_predict; i++) {
// sample next token
auto id = sampleToken(promptCtx);
// Check if the context has run out...
if (promptCtx.n_past + 1 > promptCtx.n_ctx) {
const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
// Erase the first percentage of context from the tokens...
std::cerr << implementation().modelType << ": reached the end of the context window so resizing\n";
promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
promptCtx.n_past = promptCtx.tokens.size();
recalculateContext(promptCtx, recalculateCallback);
assert(promptCtx.n_past + 1 <= promptCtx.n_ctx);
}
if (!evalTokens(promptCtx, { id })) {
std::cerr << implementation().modelType << " ERROR: Failed to predict next token\n";
return;
}
promptCtx.n_past += 1;
// display text
for (const auto token : endTokens()) {
if (id == token) return;
}
const std::string str = tokenToString(id);
// Check if the provided str is part of our reverse prompts
bool foundPartialReversePrompt = false;
const std::string completed = cachedResponse + std::string(str);
if (reversePrompts.find(completed) != reversePrompts.end())
return;
// Check if it partially matches our reverse prompts and if so, cache
for (const auto& s : reversePrompts) {
if (s.compare(0, completed.size(), completed) == 0) {
foundPartialReversePrompt = true;
cachedResponse = completed;
break;
}
}
// Regardless the token gets added to our cache
cachedTokens.push_back(id);
// Continue if we have found a partial match
if (foundPartialReversePrompt)
continue;
// Empty the cache
for (auto t : cachedTokens) {
if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
promptCtx.tokens.erase(promptCtx.tokens.begin());
promptCtx.tokens.push_back(t);
//TODO: Conversion to std::string can be avoided here...
if (!responseCallback(t, std::string(tokenToString(t))))
return;
}
cachedTokens.clear();
}
}