gpt4all/gpt4all-backend/scripts/convert_bert_hf_to_gguf.py

141 lines
3.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
2023-09-25 13:22:52 -04:00
from __future__ import annotations
import json
import struct
import sys
from pathlib import Path
import gguf
import numpy as np
from transformers import AutoConfig, AutoModel, AutoTokenizer
2023-09-25 13:22:52 -04:00
if not 2 <= len(sys.argv) < 4:
2023-09-28 15:32:43 -04:00
print("Usage: {} dir-model [ftype]\n".format(Path(__file__).name))
2023-09-25 13:22:52 -04:00
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = Path(sys.argv[1])
with open(dir_model / "vocab.txt", encoding="utf-8") as f:
vocab = f.readlines()
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
2023-09-28 15:32:43 -04:00
2023-09-25 13:22:52 -04:00
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = dir_model / ("ggml-model-" + ftype_str[ftype] + ".gguf")
ARCH = gguf.MODEL_ARCH.BERT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
config = AutoConfig.from_pretrained(dir_model)
2023-09-25 13:22:52 -04:00
block_count = config.num_hidden_layers
2023-09-25 13:22:52 -04:00
gguf_writer.add_name("BERT")
gguf_writer.add_context_length(config.max_position_embeddings)
gguf_writer.add_embedding_length(config.hidden_size)
gguf_writer.add_feed_forward_length(config.intermediate_size)
2023-09-25 13:22:52 -04:00
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(config.num_attention_heads)
2023-09-25 13:22:52 -04:00
gguf_writer.add_file_type(ftype)
print("gguf: get tokenizer metadata")
try:
with open(dir_model / "tokenizer.json", encoding="utf-8") as f:
tokenizer_json = json.load(f)
except FileNotFoundError as e:
print(f'Error: Missing {e.filename!r}', file=sys.stderr)
sys.exit(1)
print("gguf: get wordpiece tokenizer vocab")
tokenizer = AutoTokenizer.from_pretrained(dir_model)
print(tokenizer.encode('I believe the meaning of life is'))
tokens: list[bytearray] = []
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
for i in range(config.vocab_size):
2023-09-25 13:22:52 -04:00
try:
text = reverse_vocab[i]
except KeyError:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
gguf_writer.add_tokenizer_model("bert") # wordpiece
gguf_writer.add_token_list(tokens)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(gguf_writer)
print("gguf: get tensor metadata")
model = AutoModel.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True)
print(model)
2023-09-25 13:22:52 -04:00
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
list_vars = model.state_dict()
for name in list_vars.keys():
print(name, list_vars[name].shape, list_vars[name].dtype)
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if name in ['embeddings.position_ids', 'pooler.dense.weight', 'pooler.dense.bias']:
continue
print("Processing variable:", name, "with shape:", data.shape)
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
l_type = 1
else:
l_type = 0
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print()