alpaca-lora/generate.py
2023-03-13 15:00:05 -07:00

33 lines
870 B
Python

import torch
from peft import get_peft_model, PeftConfig, LoraConfig, PeftModel
from transformers import LLaMATokenizer, LLaMAForCausalLM
tokenizer = LLaMATokenizer.from_pretrained("./7B/tokenizer")
model = LLaMAForCausalLM.from_pretrained(
"./7B/llama-7b",
load_in_8bit=True,
device_map="auto",
)
model = PeftModel.from_pretrained(model, "./outputs")
PROMPT = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Sort the following numbers.
### Input:
5, 2, 3
### Response:"""
inputs = tokenizer(
PROMPT,
return_tensors="pt",
)
generation_output = model.generate(
**inputs, return_dict_in_generate=True, output_scores=True, max_new_tokens=50
)
for s in generation_output.sequences:
print(tokenizer.decode(s))