import os # os.environ["CUDA_VISIBLE_DEVICES"] = "0" import torch import torch.nn as nn import bitsandbytes as bnb from datasets import load_dataset import transformers assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaForCausalLM, LlamaTokenizer from peft import ( prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict, ) # optimized for RTX 4090. for larger GPUs, increase some of these? MICRO_BATCH_SIZE = 4 # this could actually be 5 but i like powers of 2 BATCH_SIZE = 128 GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE EPOCHS = 3 # we don't always need 3 tbh LEARNING_RATE = 3e-4 # the Karpathy constant CUTOFF_LEN = 256 # 256 accounts for about 96% of the data LORA_R = 8 LORA_ALPHA = 16 LORA_DROPOUT = 0.05 VAL_SET_SIZE = 2000 TARGET_MODULES = [ "q_proj", "v_proj", ] DATA_PATH = "alpaca_data_cleaned.json" device_map = "auto" world_size = int(os.environ.get('WORLD_SIZE', 1)) ddp = world_size != 1 if ddp: device_map = {'':int(os.environ.get('LOCAL_RANK') or 0)} GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size model = LlamaForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map=device_map, ) tokenizer = LlamaTokenizer.from_pretrained( "decapoda-research/llama-7b-hf", add_eos_token=True ) model = prepare_model_for_int8_training(model) config = LoraConfig( r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=TARGET_MODULES, lora_dropout=LORA_DROPOUT, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token data = load_dataset("json", data_files=DATA_PATH) train_val = data["train"].train_test_split( test_size=VAL_SET_SIZE, shuffle=True, seed=42 ) train_data = train_val["train"] val_data = train_val["test"] def generate_prompt(data_point): # sorry about the formatting disaster gotta move fast if data_point["input"]: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Input: {data_point["input"]} ### Response: {data_point["output"]}""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Response: {data_point["output"]}""" def tokenize(prompt): # there's probably a way to do this with the tokenizer settings # but again, gotta move fast result = tokenizer( prompt, truncation=True, max_length=CUTOFF_LEN + 1, padding="max_length", ) return { "input_ids": result["input_ids"][:-1], "attention_mask": result["attention_mask"][:-1], } train_data = train_data.shuffle().map(lambda x: tokenize(generate_prompt(x))) val_data = val_data.shuffle().map(lambda x: tokenize(generate_prompt(x))) trainer = transformers.Trainer( model=model, train_dataset=train_data, eval_dataset=val_data, args=transformers.TrainingArguments( per_device_train_batch_size=MICRO_BATCH_SIZE, gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, warmup_steps=100, num_train_epochs=EPOCHS, learning_rate=LEARNING_RATE, fp16=True, logging_steps=20, evaluation_strategy="steps", save_strategy="steps", eval_steps=200, save_steps=200, output_dir="lora-alpaca", save_total_limit=3, load_best_model_at_end=True, ddp_find_unused_parameters=False if ddp else None, ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False old_state_dict = model.state_dict model.state_dict = ( lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict()) ).__get__(model, type(model)) trainer.train() model.save_pretrained("lora-alpaca") print("\n If there's a warning about missing keys above, please disregard :)")