import os import json import torch from peft import PeftModel, LoraConfig from transformers import LLaMATokenizer, LLaMAForCausalLM tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf") base_model = LLaMAForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=False, torch_dtype=torch.float16, device_map={"": "cpu"}, ) lora_model = PeftModel.from_pretrained( base_model, "tloen/alpaca-lora-7b", device_map={"": "cpu"}, torch_dtype=torch.float16, ) lora_model.eval() # merge weights lora_model_sd = lora_model.state_dict() params = { "dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": -1, } n_layers = params["n_layers"] n_heads = params["n_heads"] dim = params["dim"] dims_per_head = dim // n_heads base = 10000.0 inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) def permute(w): return ( w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) ) def unpermute(w): return ( w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim) ) def translate_state_dict_key(k): k = k.replace("base_model.model.", "") if k == "model.embed_tokens.weight": return "tok_embeddings.weight" elif k == "model.norm.weight": return "norm.weight" elif k == "lm_head.weight": return "output.weight" elif k.startswith("model.layers."): layer = k.split(".")[2] if k.endswith(".self_attn.q_proj.weight"): return f"layers.{layer}.attention.wq.weight" elif k.endswith(".self_attn.k_proj.weight"): return f"layers.{layer}.attention.wk.weight" elif k.endswith(".self_attn.v_proj.weight"): return f"layers.{layer}.attention.wv.weight" elif k.endswith(".self_attn.o_proj.weight"): return f"layers.{layer}.attention.wo.weight" elif k.endswith(".mlp.gate_proj.weight"): return f"layers.{layer}.feed_forward.w1.weight" elif k.endswith(".mlp.down_proj.weight"): return f"layers.{layer}.feed_forward.w2.weight" elif k.endswith(".mlp.up_proj.weight"): return f"layers.{layer}.feed_forward.w3.weight" elif k.endswith(".input_layernorm.weight"): return f"layers.{layer}.attention_norm.weight" elif k.endswith(".post_attention_layernorm.weight"): return f"layers.{layer}.ffn_norm.weight" elif k.endswith("rotary_emb.inv_freq") or "lora" in k: return None else: print(layer, k) raise NotImplementedError else: print(k) raise NotImplementedError new_state_dict = {} for k, v in lora_model_sd.items(): new_k = translate_state_dict_key(k) if new_k is not None: if "wq" in new_k or "wk" in new_k: new_state_dict[new_k] = unpermute(v) else: new_state_dict[new_k] = v os.makedirs("./ckpt", exist_ok=True) torch.save(new_state_dict, "./ckpt/consolidated.00.pth") with open("./ckpt/params.json", "w") as f: json.dump(params, f)