import os import torch import transformers from peft import PeftModel from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402 BASE_MODEL = os.environ.get("BASE_MODEL", None) assert ( BASE_MODEL ), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=decapoda-research/llama-7b-hf`" # noqa: E501 tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) base_model = LlamaForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=False, torch_dtype=torch.float16, device_map={"": "cpu"}, ) first_weight = base_model.model.layers[0].self_attn.q_proj.weight first_weight_old = first_weight.clone() lora_model = PeftModel.from_pretrained( base_model, "tloen/alpaca-lora-7b", device_map={"": "cpu"}, torch_dtype=torch.float16, ) lora_weight = lora_model.base_model.model.model.layers[ 0 ].self_attn.q_proj.weight assert torch.allclose(first_weight_old, first_weight) # merge weights for layer in lora_model.base_model.model.model.layers: layer.self_attn.q_proj.merge_weights = True layer.self_attn.v_proj.merge_weights = True lora_model.train(False) # did we do anything? assert not torch.allclose(first_weight_old, first_weight) lora_model_sd = lora_model.state_dict() deloreanized_sd = { k.replace("base_model.model.", ""): v for k, v in lora_model_sd.items() if "lora" not in k } LlamaForCausalLM.save_pretrained( base_model, "./hf_ckpt", state_dict=deloreanized_sd, max_shard_size="400MB" )