import os import random import sys import torch import torch.nn as nn import bitsandbytes as bnb from datasets import load_dataset import transformers assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaForCausalLM, LlamaTokenizer, TrainerCallback from peft import ( prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict, ) # optimized for RTX 4090. for larger GPUs, increase some of these? MICRO_BATCH_SIZE = 4 # this could actually be 5 but i like powers of 2 BATCH_SIZE = 128 GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE EPOCHS = 5 # remember, we're loading the best checkpoint with the val set LEARNING_RATE = 3e-4 # the Karpathy constant CUTOFF_LEN = 256 # 256 accounts for about 96% of the data LORA_R = 8 LORA_ALPHA = 16 LORA_DROPOUT = 0.05 VAL_SET_SIZE = 2000 TARGET_MODULES = [ "q_proj", "v_proj", ] DATA_PATH = "alpaca_data_cleaned.json" OUTPUT_DIR = "lora-alpaca" device_map = "auto" world_size = int(os.environ.get("WORLD_SIZE", 1)) ddp = world_size != 1 if ddp: device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size model = LlamaForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map=device_map, ) tokenizer = LlamaTokenizer.from_pretrained( "decapoda-research/llama-7b-hf", add_eos_token=True ) model = prepare_model_for_int8_training(model) config = LoraConfig( r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=TARGET_MODULES, lora_dropout=LORA_DROPOUT, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) tokenizer.pad_token_id = 1 # unk. we want this to be different from the eos token data = load_dataset("json", data_files=DATA_PATH) def generate_prompt(data_point): # sorry about the formatting disaster gotta move fast if data_point["input"]: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Input: {data_point["input"]} ### Response: {data_point["output"]}""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Response: {data_point["output"]}""" def tokenize(prompt): # there's probably a way to do this with the tokenizer settings # but again, gotta move fast result = tokenizer( prompt, truncation=True, max_length=CUTOFF_LEN + 1, padding="max_length", ) return { "input_ids": result["input_ids"][:-1], "attention_mask": result["attention_mask"][:-1], } def generate_and_tokenize_prompt(data_point): # This function masks out the labels for the input, # so that our loss is computed only on the response. user_prompt = ( ( f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Input: {data_point["input"]} ### Response: """ ) if data_point["input"] else ( f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Response: """ ) ) len_user_prompt_tokens = ( len( tokenizer( user_prompt, truncation=True, max_length=CUTOFF_LEN + 1, )["input_ids"] ) - 1 ) # no eos token full_tokens = tokenizer( user_prompt + data_point["output"], truncation=True, max_length=CUTOFF_LEN + 1, padding="max_length", )["input_ids"][:-1] return { "input_ids": full_tokens, "labels": [-100] * len_user_prompt_tokens # mask out the user prompt + [ token if token != tokenizer.pad_token_id else -100 for token in full_tokens[len_user_prompt_tokens:] ], # mask out the padding "attention_mask": [1] * (len(full_tokens)), } if VAL_SET_SIZE > 0: train_val = data["train"].train_test_split( test_size=VAL_SET_SIZE, shuffle=True, seed=42 ) train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt) val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt) else: train_data = data["train"].shuffle().map(generate_and_tokenize_prompt) val_data = None class SampleCallback(TrainerCallback): def on_evaluate(self, args, state, control, **kwargs): model = kwargs["model"] input_ids = tokenizer( generate_prompt(random.choice(train_val["test"])).split("### Response:")[0] + "### Response:", truncation=True, max_length=CUTOFF_LEN + 1, return_tensors="pt", )["input_ids"][:, :-1] s = model.generate(input_ids=input_ids, max_new_tokens=100) print(tokenizer.decode(s[0])) trainer = transformers.Trainer( model=model, train_dataset=train_data, eval_dataset=val_data, # callbacks=[SampleCallback()], args=transformers.TrainingArguments( per_device_train_batch_size=MICRO_BATCH_SIZE, gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, warmup_steps=100, num_train_epochs=EPOCHS, learning_rate=LEARNING_RATE, fp16=True, logging_steps=20, evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no", save_strategy="steps", eval_steps=200 if VAL_SET_SIZE > 0 else None, save_steps=200, output_dir=OUTPUT_DIR, save_total_limit=3, load_best_model_at_end=True if VAL_SET_SIZE > 0 else False, ddp_find_unused_parameters=False if ddp else None, ), ) model.config.use_cache = False old_state_dict = model.state_dict model.state_dict = ( lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict()) ).__get__(model, type(model)) if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) trainer.train() model.save_pretrained(OUTPUT_DIR) print("\n If there's a warning about missing keys above, please disregard :)")