import os # os.environ["CUDA_VISIBLE_DEVICES"] = "0" import torch import torch.nn as nn import bitsandbytes as bnb from datasets import load_dataset import transformers from transformers import AutoTokenizer, AutoConfig, LLaMAForCausalLM, LLaMATokenizer from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model # optimized for RTX 4090. for larger GPUs, increase some of these? MICRO_BATCH_SIZE = 4 # this could actually be 5 but i like powers of 2 BATCH_SIZE = 128 GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE EPOCHS = 3 # we don't need 3 tbh LEARNING_RATE = 3e-4 # the Karpathy constant CUTOFF_LEN = 256 # 256 accounts for about 96% of the data LORA_R = 8 LORA_ALPHA = 16 LORA_DROPOUT = 0.05 model = LLaMAForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map="auto", ) tokenizer = LLaMATokenizer.from_pretrained( "decapoda-research/llama-7b-hf", add_eos_token=True ) model = prepare_model_for_int8_training(model) config = LoraConfig( r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=["q_proj", "v_proj"], lora_dropout=LORA_DROPOUT, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token data = load_dataset("json", data_files="alpaca_data.json") def generate_prompt(data_point): # sorry about the formatting disaster gotta move fast if data_point["input"]: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Input: {data_point["input"]} ### Response: {data_point["output"]}""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Response: {data_point["output"]}""" data = data.shuffle().map( lambda data_point: tokenizer( generate_prompt(data_point), truncation=True, max_length=CUTOFF_LEN, padding="max_length", ) ) trainer = transformers.Trainer( model=model, train_dataset=data["train"], args=transformers.TrainingArguments( per_device_train_batch_size=MICRO_BATCH_SIZE, gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, warmup_steps=100, num_train_epochs=EPOCHS, learning_rate=LEARNING_RATE, fp16=True, logging_steps=1, output_dir="lora-alpaca", save_total_limit=3, ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train(resume_from_checkpoint=False) model.save_pretrained("lora-alpaca")