mirror of
https://github.com/tloen/alpaca-lora.git
synced 2024-10-01 01:05:56 -04:00
Validation set
This commit is contained in:
parent
5f6614e6fc
commit
35029da078
@ -43,7 +43,7 @@ which should help users who want to use the model with projects like [llama.cpp]
|
||||
### To do
|
||||
|
||||
- [x] Merge LoRA weights into LLaMA weights to remove inference dependency on PEFT
|
||||
- [ ] Train/val split
|
||||
- [x] Train/val split
|
||||
- [ ] Hyperparameter tuning code
|
||||
- [ ] Support for `13b`, `30b`, `65b`
|
||||
- [ ] Train a version that doesn't waste tokens on the prompt header
|
||||
|
37
finetune.py
37
finetune.py
@ -10,8 +10,13 @@ import transformers
|
||||
assert (
|
||||
"LlamaTokenizer" in transformers._import_structure["models.llama"]
|
||||
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
|
||||
from transformers import AutoTokenizer, AutoConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
from peft import (
|
||||
prepare_model_for_int8_training,
|
||||
LoraConfig,
|
||||
get_peft_model,
|
||||
get_peft_model_state_dict,
|
||||
)
|
||||
|
||||
|
||||
# optimized for RTX 4090. for larger GPUs, increase some of these?
|
||||
@ -24,6 +29,7 @@ CUTOFF_LEN = 256 # 256 accounts for about 96% of the data
|
||||
LORA_R = 8
|
||||
LORA_ALPHA = 16
|
||||
LORA_DROPOUT = 0.05
|
||||
VAL_SET_SIZE = 2000
|
||||
|
||||
model = LlamaForCausalLM.from_pretrained(
|
||||
"decapoda-research/llama-7b-hf",
|
||||
@ -48,6 +54,12 @@ model = get_peft_model(model, config)
|
||||
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
|
||||
data = load_dataset("json", data_files="alpaca_data.json")
|
||||
|
||||
train_val = data["train"].train_test_split(
|
||||
test_size=VAL_SET_SIZE, shuffle=True, seed=42
|
||||
)
|
||||
train_data = train_val["train"]
|
||||
val_data = train_val["test"]
|
||||
|
||||
|
||||
def generate_prompt(data_point):
|
||||
# sorry about the formatting disaster gotta move fast
|
||||
@ -87,11 +99,13 @@ def tokenize(prompt):
|
||||
}
|
||||
|
||||
|
||||
data = data.shuffle().map(lambda x: tokenize(generate_prompt(x)))
|
||||
train_data = train_data.shuffle().map(lambda x: tokenize(generate_prompt(x)))
|
||||
val_data = val_data.shuffle().map(lambda x: tokenize(generate_prompt(x)))
|
||||
|
||||
trainer = transformers.Trainer(
|
||||
model=model,
|
||||
train_dataset=data["train"],
|
||||
train_dataset=train_data,
|
||||
eval_dataset=val_data,
|
||||
args=transformers.TrainingArguments(
|
||||
per_device_train_batch_size=MICRO_BATCH_SIZE,
|
||||
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
||||
@ -100,12 +114,25 @@ trainer = transformers.Trainer(
|
||||
learning_rate=LEARNING_RATE,
|
||||
fp16=True,
|
||||
logging_steps=20,
|
||||
evaluation_strategy="steps",
|
||||
save_strategy="steps",
|
||||
eval_steps=200,
|
||||
save_steps=200,
|
||||
output_dir="lora-alpaca",
|
||||
save_total_limit=3,
|
||||
load_best_model_at_end=True,
|
||||
),
|
||||
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
||||
)
|
||||
model.config.use_cache = False
|
||||
trainer.train(resume_from_checkpoint=False)
|
||||
|
||||
old_state_dict = model.state_dict
|
||||
model.state_dict = (
|
||||
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
|
||||
).__get__(model, type(model))
|
||||
|
||||
trainer.train()
|
||||
|
||||
model.save_pretrained("lora-alpaca")
|
||||
|
||||
print("\n If there's a warning about missing keys above, please disregard :)")
|
||||
|
Loading…
Reference in New Issue
Block a user