Validation set

This commit is contained in:
Eric Wang 2023-03-16 15:05:17 -07:00
parent 5f6614e6fc
commit 35029da078
2 changed files with 33 additions and 6 deletions

View File

@ -43,7 +43,7 @@ which should help users who want to use the model with projects like [llama.cpp]
### To do
- [x] Merge LoRA weights into LLaMA weights to remove inference dependency on PEFT
- [ ] Train/val split
- [x] Train/val split
- [ ] Hyperparameter tuning code
- [ ] Support for `13b`, `30b`, `65b`
- [ ] Train a version that doesn't waste tokens on the prompt header

View File

@ -10,8 +10,13 @@ import transformers
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import AutoTokenizer, AutoConfig, LlamaForCausalLM, LlamaTokenizer
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import (
prepare_model_for_int8_training,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
)
# optimized for RTX 4090. for larger GPUs, increase some of these?
@ -24,6 +29,7 @@ CUTOFF_LEN = 256 # 256 accounts for about 96% of the data
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE = 2000
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
@ -48,6 +54,12 @@ model = get_peft_model(model, config)
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
data = load_dataset("json", data_files="alpaca_data.json")
train_val = data["train"].train_test_split(
test_size=VAL_SET_SIZE, shuffle=True, seed=42
)
train_data = train_val["train"]
val_data = train_val["test"]
def generate_prompt(data_point):
# sorry about the formatting disaster gotta move fast
@ -87,11 +99,13 @@ def tokenize(prompt):
}
data = data.shuffle().map(lambda x: tokenize(generate_prompt(x)))
train_data = train_data.shuffle().map(lambda x: tokenize(generate_prompt(x)))
val_data = val_data.shuffle().map(lambda x: tokenize(generate_prompt(x)))
trainer = transformers.Trainer(
model=model,
train_dataset=data["train"],
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
@ -100,12 +114,25 @@ trainer = transformers.Trainer(
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=20,
evaluation_strategy="steps",
save_strategy="steps",
eval_steps=200,
save_steps=200,
output_dir="lora-alpaca",
save_total_limit=3,
load_best_model_at_end=True,
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
trainer.train(resume_from_checkpoint=False)
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
trainer.train()
model.save_pretrained("lora-alpaca")
print("\n If there's a warning about missing keys above, please disregard :)")