CodeT5/run_clone.py
2021-09-03 21:58:19 +08:00

335 lines
15 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import
import os
from models import CloneModel as Model
import torch
import logging
import argparse
import math
import numpy as np
from io import open
from tqdm import tqdm
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import (AdamW, get_linear_schedule_with_warmup,
RobertaConfig, RobertaModel, RobertaTokenizer,
BartConfig, BartForConditionalGeneration, BartTokenizer,
T5Config, T5ForConditionalGeneration, T5Tokenizer)
import multiprocessing
from sklearn.metrics import recall_score, precision_score, f1_score
import time
from configs import add_args, set_seed
from utils import get_filenames, get_elapse_time, load_and_cache_clone_data
from models import get_model_size, load_codet5
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer),
't5': (T5Config, T5ForConditionalGeneration, T5Tokenizer),
'codet5': (T5Config, T5ForConditionalGeneration, RobertaTokenizer),
'bart': (BartConfig, BartForConditionalGeneration, BartTokenizer)}
cpu_cont = multiprocessing.cpu_count()
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def evaluate(args, model, eval_examples, eval_data, write_to_pred=False):
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
logits = []
y_trues = []
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Evaluating"):
inputs = batch[0].to(args.device)
labels = batch[1].to(args.device)
with torch.no_grad():
lm_loss, logit = model(inputs, labels)
eval_loss += lm_loss.mean().item()
logits.append(logit.cpu().numpy())
y_trues.append(labels.cpu().numpy())
nb_eval_steps += 1
logits = np.concatenate(logits, 0)
y_trues = np.concatenate(y_trues, 0)
best_threshold = 0.5
y_preds = logits[:, 1] > best_threshold
recall = recall_score(y_trues, y_preds, average='macro')
precision = precision_score(y_trues, y_preds, average='macro')
f1 = f1_score(y_trues, y_preds, average='macro')
result = {
"eval_recall": float(recall),
"eval_precision": float(precision),
"eval_f1": float(f1),
"eval_threshold": best_threshold,
}
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key], 4)))
logger.info(" " + "*" * 20)
if write_to_pred:
with open(os.path.join(args.output_dir, "predictions.txt"), 'w') as f:
for example, pred in zip(eval_examples, y_preds):
if pred:
f.write(example.url1 + '\t' + example.url2 + '\t' + '1' + '\n')
else:
f.write(example.url1 + '\t' + example.url2 + '\t' + '0' + '\n')
return result
def main():
parser = argparse.ArgumentParser()
t0 = time.time()
args = add_args(parser)
logger.info(args)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, cpu count: %d",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), cpu_cont)
args.device = device
set_seed(args)
# Build model
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path)
if args.model_type == 'codet5':
# reset special ids: pad_token_id = 0, bos_token_id = 1, eos_token_id = 2
config, model, tokenizer = load_codet5(config, model, tokenizer_class,
tokenizer_path=args.tokenizer_path)
else:
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name)
model = Model(model, config, tokenizer, args)
logger.info("Finish loading model [%s] from %s", get_model_size(model), args.model_name_or_path)
if args.load_model_path is not None:
logger.info("Reload model from {}".format(args.load_model_path))
model.load_state_dict(torch.load(args.load_model_path))
model.to(device)
pool = multiprocessing.Pool(cpu_cont)
args.train_filename, args.dev_filename, args.test_filename = get_filenames(args.data_dir, args.task, args.sub_task)
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+')
if args.do_train:
if args.n_gpu > 1:
# multi-gpu training
model = torch.nn.DataParallel(model)
if args.local_rank in [-1, 0] and args.data_num == -1:
summary_fn = './tensorboard/{}'.format('/'.join(args.output_dir.split('/')[1:]))
tb_writer = SummaryWriter(summary_fn)
# Prepare training data loader
train_examples, train_data = load_and_cache_clone_data(args, args.train_filename, pool, tokenizer, 'train',
is_sample=False)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
num_train_optimization_steps = args.num_train_epochs * len(train_dataloader)
save_steps = max(len(train_dataloader) // 10, 1)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
if args.warmup_steps < 1:
warmup_steps = num_train_optimization_steps * args.warmup_steps
else:
warmup_steps = int(args.warmup_steps)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=num_train_optimization_steps)
# Start training
train_example_num = len(train_data)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_example_num)
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Batch num = %d", math.ceil(train_example_num / args.train_batch_size))
logger.info(" Num epoch = %d", args.num_train_epochs)
global_step, best_f1 = 0, 0
not_f1_inc_cnt = 0
is_early_stop = False
for cur_epoch in range(args.start_epoch, int(args.num_train_epochs)):
bar = tqdm(train_dataloader, total=len(train_dataloader), desc="Training")
nb_tr_examples, nb_tr_steps, tr_loss = 0, 0, 0
model.train()
for step, batch in enumerate(bar):
batch = tuple(t.to(device) for t in batch)
source_ids, labels = batch
# pdb.set_trace()
loss, logits = model(source_ids, labels)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if nb_tr_steps % args.gradient_accumulation_steps == 0:
# Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
train_loss = round(tr_loss * args.gradient_accumulation_steps / nb_tr_steps, 4)
bar.set_description("[{}] Train loss {}".format(cur_epoch, round(train_loss, 3)))
if (step + 1) % save_steps == 0 and args.do_eval:
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
eval_examples, eval_data = load_and_cache_clone_data(args, args.dev_filename, pool, tokenizer,
'valid', is_sample=True)
result = evaluate(args, model, eval_examples, eval_data)
eval_f1 = result['eval_f1']
if args.data_num == -1:
tb_writer.add_scalar('dev_f1', round(eval_f1, 4), cur_epoch)
# save last checkpoint
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
if True or args.data_num == -1 and args.save_last_checkpoints:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
if eval_f1 > best_f1:
not_f1_inc_cnt = 0
logger.info(" Best f1: %s", round(eval_f1, 4))
logger.info(" " + "*" * 20)
fa.write("[%d] Best f1 changed into %.4f\n" % (cur_epoch, round(eval_f1, 4)))
best_f1 = eval_f1
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-f1')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or True:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best ppl model into %s", output_model_file)
else:
not_f1_inc_cnt += 1
logger.info("F1 does not increase for %d epochs", not_f1_inc_cnt)
if not_f1_inc_cnt > args.patience:
logger.info("Early stop as f1 do not increase for %d times", not_f1_inc_cnt)
fa.write("[%d] Early stop as not_f1_inc_cnt=%d\n" % (cur_epoch, not_f1_inc_cnt))
is_early_stop = True
break
model.train()
if is_early_stop:
break
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if args.local_rank in [-1, 0] and args.data_num == -1:
tb_writer.close()
if args.do_test:
logger.info(" " + "***** Testing *****")
logger.info(" Batch size = %d", args.eval_batch_size)
for criteria in ['best-f1']: # , 'last'
file = os.path.join(args.output_dir, 'checkpoint-{}/pytorch_model.bin'.format(criteria))
# logger.info("*" * 10 + "Start testing" + "*" * 10)
logger.info("Reload model from {}".format(file))
model.load_state_dict(torch.load(file))
if args.n_gpu > 1:
# multi-gpu training
model = torch.nn.DataParallel(model)
eval_examples, eval_data = load_and_cache_clone_data(args, args.test_filename, pool, tokenizer, 'test',
False)
result = evaluate(args, model, eval_examples, eval_data, write_to_pred=True)
logger.info(" test_f1=%.4f", result['eval_f1'])
logger.info(" test_prec=%.4f", result['eval_precision'])
logger.info(" test_rec=%.4f", result['eval_recall'])
logger.info(" " + "*" * 20)
fa.write("[%s] test-f1: %.4f, precision: %.4f, recall: %.4f\n" % (
criteria, result['eval_f1'], result['eval_precision'], result['eval_recall']))
if args.res_fn:
with open(args.res_fn, 'a+') as f:
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file))
f.write("[%s] f1: %.4f, precision: %.4f, recall: %.4f\n\n" % (
criteria, result['eval_f1'], result['eval_precision'], result['eval_recall']))
fa.close()
if __name__ == "__main__":
main()