CodeT5/CodeT5+/humaneval/generate_codet5p.py
2023-05-20 18:27:46 +08:00

163 lines
6.5 KiB
Python

import argparse
import pprint
import os
import re
from tqdm import tqdm
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from human_eval.data import write_jsonl, read_problems, stream_jsonl
def extract_text(prompt, remove_lines=True):
token = '\"\"\"'
start = token
end = '>>>'
start_idx = prompt.find(start) + len(start)
end_idx = prompt.find(end)
output = prompt[start_idx: end_idx]
if remove_lines:
output = output.replace('\n', ' ')
output = re.sub(r"\s+", " ", output).strip()
return output
INSTRUCTION = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Create a Python script for this problem:
{}
### Response:"""
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='Salesforce/instructcodet5p-16b', help="")
parser.add_argument('--output_path', type=str, help="")
parser.add_argument('--start_index', type=int, default=0, help="")
parser.add_argument('--end_index', type=int, default=164, help="")
parser.add_argument('--temperature', type=float, default=0.8, help="")
parser.add_argument('--N', type=int, default=200, help="")
parser.add_argument('--max_len', type=int, default=600, help="")
parser.add_argument('--decoding_style', type=str, default='sampling', help="")
parser.add_argument('--num_seqs_per_iter', type=int, default=50, help='')
parser.add_argument('--overwrite', action='store_true', help='')
args = parser.parse_args()
argsdict = vars(args)
print(pprint.pformat(argsdict))
STOP_SEQS = ['\nclass', '\ndef', '\n#', '\nif', '\nprint']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
problems = read_problems()
task_ids = sorted(problems.keys())[args.start_index: args.end_index]
prompts = [problems[task_id]['prompt'] for task_id in task_ids]
num_samples = len(prompts)
print("Number of samples: {}".format(num_samples))
tokenizer = AutoTokenizer.from_pretrained(args.model)
model = AutoModelForSeq2SeqLM.from_pretrained(args.model,
trust_remote_code=True, # False for 220m and 770m models
torch_dtype=torch.float16,
low_cpu_mem_usage=True)
model.eval()
model.to(device)
# for larger LLMs such as 2B, 6B, and 16B, we need to pass the text prompt to the decoder
prompt_to_decoder = True if any([size in args.model for size in ['2b', '6b', '16b']]) else False
print(f"Loaded {args.model}.")
for i in tqdm(range(num_samples), ncols=0, total=num_samples):
output_file = args.output_path + '/{}.jsonl'.format(args.start_index + i)
if os.path.exists(output_file) and not args.overwrite:
print(f'Skip {output_file} as it already exists')
continue
prompt = prompts[i].replace(' ', '\t')
if args.model == 'Salesforce/instructcodet5p-16b':
prompt_batch = [INSTRUCTION.format(extract_text(prompt))]
prompt_batch_decoder = [INSTRUCTION.format(extract_text(prompt)) + prompt]
else:
prompt_batch = [prompt]
prompt_batch_decoder = [prompt]
ids_batch = [task_ids[i]]
completion_seqs = []
encoding = tokenizer(prompt_batch, return_tensors="pt", truncation=True, max_length=args.max_len).to(device)
encoding_decoder = tokenizer(prompt_batch_decoder, return_tensors="pt", truncation=True,
max_length=args.max_len).to(device)
if args.decoding_style == 'sampling':
loops = int(args.N / args.num_seqs_per_iter)
else:
loops = 1
for _ in tqdm(range(loops), total=loops, leave=False, ncols=0):
with torch.no_grad():
if args.decoding_style == 'sampling':
if prompt_to_decoder:
gen_tokens = model.generate(**encoding,
decoder_input_ids=encoding_decoder['input_ids'],
do_sample=True,
temperature=args.temperature,
max_length=args.max_len,
num_return_sequences=args.num_seqs_per_iter,
decoder_start_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
top_p=0.95)
else:
gen_tokens = model.generate(**encoding,
do_sample=True,
temperature=args.temperature,
max_length=args.max_len,
num_return_sequences=args.num_seqs_per_iter,
eos_token_id=tokenizer.eos_token_id,
top_p=0.95)
if gen_tokens is not None:
if prompt_to_decoder:
gen_tokens = gen_tokens[:, encoding_decoder['input_ids'].shape[-1]:]
gen_seqs = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)
else:
gen_seqs = None
if gen_seqs is not None:
assert len(ids_batch) == 1
task_id = ids_batch[0]
for seq_idx, gen_seq in enumerate(gen_seqs):
completion_seq = gen_seq
for stop_seq in STOP_SEQS:
index = completion_seq.find(stop_seq)
if index != -1:
completion_seq = completion_seq[:index]
completion_seq = completion_seq.replace('\t', ' ')
all_code = prompt.replace('\t', ' ') + completion_seq
completion_seqs.append(
{'task_id': task_id,
'completion': completion_seq,
'all_code': all_code # final code for evaluation with unit tests
}
)
print("Saving results to {}".format(output_file))
write_jsonl(output_file, completion_seqs)
if __name__ == '__main__':
main()