CodeT5/evaluator/CodeBLEU/calc_code_bleu.py
2021-09-03 22:14:17 +08:00

81 lines
3.5 KiB
Python

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
# -*- coding:utf-8 -*-
import argparse
from evaluator.CodeBLEU import bleu, weighted_ngram_match, syntax_match, dataflow_match
# import evaluator.CodeBLEU.weighted_ngram_match
# import evaluator.CodeBLEU.syntax_match
# import evaluator.CodeBLEU.dataflow_match
def get_codebleu(refs, hyp, lang, params='0.25,0.25,0.25,0.25'):
if not isinstance(refs, list):
refs = [refs]
alpha, beta, gamma, theta = [float(x) for x in params.split(',')]
# preprocess inputs
pre_references = [[x.strip() for x in open(file, 'r', encoding='utf-8').readlines()] for file in refs]
hypothesis = [x.strip() for x in open(hyp, 'r', encoding='utf-8').readlines()]
for i in range(len(pre_references)):
assert len(hypothesis) == len(pre_references[i])
references = []
for i in range(len(hypothesis)):
ref_for_instance = []
for j in range(len(pre_references)):
ref_for_instance.append(pre_references[j][i])
references.append(ref_for_instance)
assert len(references) == len(pre_references) * len(hypothesis)
# calculate ngram match (BLEU)
tokenized_hyps = [x.split() for x in hypothesis]
tokenized_refs = [[x.split() for x in reference] for reference in references]
ngram_match_score = bleu.corpus_bleu(tokenized_refs, tokenized_hyps)
# calculate weighted ngram match
keywords = [x.strip() for x in open('/export/share/wang.y/workspace/CodeT5Full/finetune/evaluator/CodeBLEU/keywords/' + lang + '.txt', 'r', encoding='utf-8').readlines()]
def make_weights(reference_tokens, key_word_list):
return {token: 1 if token in key_word_list else 0.2 for token in reference_tokens}
tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)] \
for reference_tokens in reference] for reference in tokenized_refs]
weighted_ngram_match_score = weighted_ngram_match.corpus_bleu(tokenized_refs_with_weights, tokenized_hyps)
# calculate syntax match
syntax_match_score = syntax_match.corpus_syntax_match(references, hypothesis, lang)
# calculate dataflow match
dataflow_match_score = dataflow_match.corpus_dataflow_match(references, hypothesis, lang)
print('ngram match: {0}, weighted ngram match: {1}, syntax_match: {2}, dataflow_match: {3}'. \
format(ngram_match_score, weighted_ngram_match_score, syntax_match_score, dataflow_match_score))
code_bleu_score = alpha * ngram_match_score \
+ beta * weighted_ngram_match_score \
+ gamma * syntax_match_score \
+ theta * dataflow_match_score
return code_bleu_score
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--refs', type=str, nargs='+', required=True,
help='reference files')
parser.add_argument('--hyp', type=str, required=True,
help='hypothesis file')
parser.add_argument('--lang', type=str, required=True,
choices=['java', 'js', 'c_sharp', 'php', 'go', 'python', 'ruby'],
help='programming language')
parser.add_argument('--params', type=str, default='0.25,0.25,0.25,0.25',
help='alpha, beta and gamma')
args = parser.parse_args()
code_bleu_score = get_codebleu(args.refs, args.hyp, args.lang, args.params)
print('CodeBLEU score: ', code_bleu_score)