CodeT5/run_gen.py

387 lines
20 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
import os
import logging
import argparse
import math
import numpy as np
from tqdm import tqdm
import multiprocessing
import time
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from models import build_or_load_gen_model
from evaluator import smooth_bleu
from evaluator.CodeBLEU import calc_code_bleu
from evaluator.bleu import _bleu
from utils import get_filenames, get_elapse_time, load_and_cache_gen_data
from configs import add_args, set_seed, set_dist
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def eval_ppl_epoch(args, eval_data, eval_examples, model, tokenizer):
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
# Start evaluating model
logger.info(" " + "***** Running ppl evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
eval_loss, batch_num = 0, 0
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval ppl"):
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
eval_loss += loss.item()
batch_num += 1
eval_loss = eval_loss / batch_num
eval_ppl = round(np.exp(eval_loss), 5)
return eval_ppl
def eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, split_tag, criteria):
logger.info(" ***** Running bleu evaluation on {} data*****".format(split_tag))
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_sampler = SequentialSampler(eval_data)
if args.data_num == -1:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
else:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
pred_ids = []
bleu, codebleu = 0.0, 0.0
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval bleu for {} set".format(split_tag)):
source_ids = batch[0].to(args.device)
source_mask = source_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
preds = model(source_ids=source_ids, source_mask=source_mask)
top_preds = [pred[0].cpu().numpy() for pred in preds]
else:
preds = model.generate(source_ids,
attention_mask=source_mask,
use_cache=True,
num_beams=args.beam_size,
early_stopping=args.task == 'summarize',
max_length=args.max_target_length)
top_preds = list(preds.cpu().numpy())
pred_ids.extend(top_preds)
pred_nls = [tokenizer.decode(id, skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in pred_ids]
output_fn = os.path.join(args.res_dir, "test_{}.output".format(criteria))
gold_fn = os.path.join(args.res_dir, "test_{}.gold".format(criteria))
src_fn = os.path.join(args.res_dir, "test_{}.src".format(criteria))
if args.task in ['defect']:
target_dict = {0: 'false', 1: 'true'}
golds = [target_dict[ex.target] for ex in eval_examples]
eval_acc = np.mean([int(p == g) for p, g in zip(pred_nls, golds)])
result = {'em': eval_acc * 100, 'bleu': 0, 'codebleu': 0}
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1, open(src_fn, 'w') as f2:
for pred_nl, gold in zip(pred_nls, eval_examples):
f.write(pred_nl.strip() + '\n')
f1.write(target_dict[gold.target] + '\n')
f2.write(gold.source.strip() + '\n')
logger.info("Save the predictions into %s", output_fn)
else:
dev_accs, predictions = [], []
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1, open(src_fn, 'w') as f2:
for pred_nl, gold in zip(pred_nls, eval_examples):
dev_accs.append(pred_nl.strip() == gold.target.strip())
if args.task in ['summarize']:
predictions.append(str(gold.idx) + '\t' + pred_nl)
f.write(str(gold.idx) + '\t' + pred_nl.strip() + '\n')
f1.write(str(gold.idx) + '\t' + gold.target.strip() + '\n')
f2.write(str(gold.idx) + '\t' + gold.source.strip() + '\n')
else:
f.write(pred_nl.strip() + '\n')
f1.write(gold.target.strip() + '\n')
f2.write(gold.source.strip() + '\n')
if args.task == 'summarize':
(goldMap, predictionMap) = smooth_bleu.computeMaps(predictions, gold_fn)
bleu = round(smooth_bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
else:
bleu = round(_bleu(gold_fn, output_fn), 2)
if args.task in ['concode', 'translate', 'refine']:
codebleu = calc_code_bleu.get_codebleu(gold_fn, output_fn, args.lang)
result = {'em': np.mean(dev_accs) * 100, 'bleu': bleu}
if args.task == 'concode':
result['codebleu'] = codebleu * 100
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key], 4)))
return result
def main():
parser = argparse.ArgumentParser()
args = add_args(parser)
logger.info(args)
t0 = time.time()
set_dist(args)
set_seed(args)
config, model, tokenizer = build_or_load_gen_model(args)
model.to(args.device)
if args.n_gpu > 1:
# for DataParallel
model = torch.nn.DataParallel(model)
pool = multiprocessing.Pool(args.cpu_cont)
args.train_filename, args.dev_filename, args.test_filename = get_filenames(args.data_dir, args.task, args.sub_task)
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+')
if args.do_train:
if args.local_rank in [-1, 0] and args.data_num == -1:
summary_fn = '{}/{}'.format(args.summary_dir, '/'.join(args.output_dir.split('/')[1:]))
tb_writer = SummaryWriter(summary_fn)
# Prepare training data loader
train_examples, train_data = load_and_cache_gen_data(args, args.train_filename, pool, tokenizer, 'train')
train_sampler = RandomSampler(train_data) if args.local_rank == -1 else DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size,
num_workers=4, pin_memory=True)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
num_train_optimization_steps = args.num_train_epochs * len(train_dataloader)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=num_train_optimization_steps)
# Start training
train_example_num = len(train_data)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_example_num)
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Batch num = %d", math.ceil(train_example_num / args.train_batch_size))
logger.info(" Num epoch = %d", args.num_train_epochs)
dev_dataset = {}
global_step, best_bleu_em, best_ppl = 0, -1, 1e6
not_loss_dec_cnt, not_bleu_em_inc_cnt = 0, 0 if args.do_eval_bleu else 1e6
for cur_epoch in range(args.start_epoch, int(args.num_train_epochs)):
bar = tqdm(train_dataloader, total=len(train_dataloader), desc="Training")
nb_tr_examples, nb_tr_steps, tr_loss = 0, 0, 0
model.train()
for step, batch in enumerate(bar):
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
if nb_tr_steps % args.gradient_accumulation_steps == 0:
# Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
train_loss = round(tr_loss * args.gradient_accumulation_steps / (nb_tr_steps + 1), 4)
bar.set_description("[{}] Train loss {}".format(cur_epoch, round(train_loss, 3)))
if args.do_eval:
# Eval model with dev dataset
if 'dev_loss' in dev_dataset:
eval_examples, eval_data = dev_dataset['dev_loss']
else:
eval_examples, eval_data = load_and_cache_gen_data(args, args.dev_filename, pool, tokenizer, 'dev')
dev_dataset['dev_loss'] = eval_examples, eval_data
eval_ppl = eval_ppl_epoch(args, eval_data, eval_examples, model, tokenizer)
result = {'epoch': cur_epoch, 'global_step': global_step, 'eval_ppl': eval_ppl}
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(" " + "*" * 20)
if args.data_num == -1:
tb_writer.add_scalar('dev_ppl', eval_ppl, cur_epoch)
# save last checkpoint
if args.save_last_checkpoints:
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
if eval_ppl < best_ppl:
not_loss_dec_cnt = 0
logger.info(" Best ppl:%s", eval_ppl)
logger.info(" " + "*" * 20)
fa.write("[%d] Best ppl changed into %.4f\n" % (cur_epoch, eval_ppl))
best_ppl = eval_ppl
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best ppl model into %s", output_model_file)
else:
not_loss_dec_cnt += 1
logger.info("Ppl does not decrease for %d epochs", not_loss_dec_cnt)
if all([x > args.patience for x in [not_bleu_em_inc_cnt, not_loss_dec_cnt]]):
early_stop_str = "[%d] Early stop as not_bleu_em_inc_cnt=%d, and not_loss_dec_cnt=%d\n" % (
cur_epoch, not_bleu_em_inc_cnt, not_loss_dec_cnt)
logger.info(early_stop_str)
fa.write(early_stop_str)
break
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if args.do_eval_bleu:
eval_examples, eval_data = load_and_cache_gen_data(args, args.dev_filename, pool, tokenizer, 'dev',
only_src=True, is_sample=True)
result = eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, 'dev', 'e%d' % cur_epoch)
dev_bleu, dev_em = result['bleu'], result['em']
if args.task in ['summarize']:
dev_bleu_em = dev_bleu
elif args.task in ['defect']:
dev_bleu_em = dev_em
else:
dev_bleu_em = dev_bleu + dev_em
if args.data_num == -1:
tb_writer.add_scalar('dev_bleu_em', dev_bleu_em, cur_epoch)
# tb_writer.add_scalar('dev_em', dev_em, cur_epoch)
if dev_bleu_em > best_bleu_em:
not_bleu_em_inc_cnt = 0
logger.info(" [%d] Best bleu+em: %.2f (bleu: %.2f, em: %.2f)",
cur_epoch, dev_bleu_em, dev_bleu, dev_em)
logger.info(" " + "*" * 20)
best_bleu_em = dev_bleu_em
fa.write("[%d] Best bleu+em changed into %.2f (bleu: %.2f, em: %.2f)\n" % (
cur_epoch, best_bleu_em, dev_bleu, dev_em))
# Save best checkpoint for best bleu
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best bleu model into %s", output_model_file)
else:
not_bleu_em_inc_cnt += 1
logger.info("Bleu does not increase for %d epochs", not_bleu_em_inc_cnt)
fa.write(
"[%d] Best bleu+em (%.2f) does not drop changed for %d epochs, cur bleu+em: %.2f (bleu: %.2f, em: %.2f)\n" % (
cur_epoch, best_bleu_em, not_bleu_em_inc_cnt, dev_bleu_em, dev_bleu, dev_em))
if all([x > args.patience for x in [not_bleu_em_inc_cnt, not_loss_dec_cnt]]):
stop_early_str = "[%d] Early stop as not_bleu_em_inc_cnt=%d, and not_loss_dec_cnt=%d\n" % (
cur_epoch, not_bleu_em_inc_cnt, not_loss_dec_cnt)
logger.info(stop_early_str)
fa.write(stop_early_str)
break
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if args.local_rank in [-1, 0] and args.data_num == -1:
tb_writer.close()
logger.info("Finish training and take %s", get_elapse_time(t0))
if args.do_test:
logger.info(" " + "***** Testing *****")
logger.info(" Batch size = %d", args.eval_batch_size)
for criteria in ['best-bleu']:
file = os.path.join(args.output_dir, 'checkpoint-{}/pytorch_model.bin'.format(criteria))
logger.info("Reload model from {}".format(file))
model.load_state_dict(torch.load(file))
eval_examples, eval_data = load_and_cache_gen_data(args, args.test_filename, pool, tokenizer, 'test',
only_src=True, is_sample=False)
result = eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, 'test', criteria)
test_bleu, test_em = result['bleu'], result['em']
test_codebleu = result['codebleu'] if 'codebleu' in result else 0
result_str = "[%s] bleu-4: %.2f, em: %.4f, codebleu: %.4f\n" % (criteria, test_bleu, test_em, test_codebleu)
logger.info(result_str)
fa.write(result_str)
if args.res_fn:
with open(args.res_fn, 'a+') as f:
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file))
f.write(result_str)
logger.info("Finish and take {}".format(get_elapse_time(t0)))
fa.write("Finish and take {}".format(get_elapse_time(t0)))
fa.close()
if __name__ == "__main__":
main()