CodeT5/run_multi_gen.py
2022-01-07 21:17:33 +08:00

536 lines
26 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
import os
import torch
import logging
import argparse
import math
import numpy as np
from tqdm import tqdm
from itertools import cycle
import multiprocessing
import time
import sys
import pdb
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from models import build_or_load_gen_model
from evaluator import smooth_bleu
from evaluator.CodeBLEU import calc_code_bleu
from evaluator.bleu import _bleu
from utils import get_elapse_time, load_and_cache_multi_gen_data
from configs import add_args, set_seed, set_dist
cpu_cont = multiprocessing.cpu_count()
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
WORKER_NUM = 0
def get_max_trg_len_by_task(task, sub_task):
if task == 'summarize':
max_target_length = 128
elif task == 'translate':
max_target_length = 256
elif task == 'refine':
if sub_task == 'small':
max_target_length = 120
else:
max_target_length = 240
elif task == 'concode':
max_target_length = 150
elif task == 'defect':
max_target_length = 3
return max_target_length
def get_bs(cur_task, model_tag):
task = cur_task.split('_')[0]
sub_task = cur_task.split('_')[-1]
if 'codet5_small' in model_tag:
bs = 32
if task == 'summarize' or task == 'translate' or (task == 'refine' and sub_task == 'small'):
bs = 64
else:
# codet5_base
bs = 28
if task == 'translate':
bs = 25
elif task == 'summarize':
bs = 40
return bs
def eval_bleu(args, eval_data, eval_examples, model, tokenizer, split_tag, cur_task, criteria):
eval_sampler = SequentialSampler(eval_data)
if args.data_num == -1:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
else:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
task = cur_task.split('_')[0]
sub_task = cur_task.split('_')[-1]
max_target_length = get_max_trg_len_by_task(task, sub_task)
model.eval()
pred_ids = []
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval bleu for {} set".format(split_tag)):
source_ids = batch[0].to(args.device)
source_mask = source_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
preds = model(source_ids=source_ids, source_mask=source_mask)
top_preds = [pred[0].cpu().numpy() for pred in preds]
else:
preds = model.generate(source_ids,
attention_mask=source_mask,
use_cache=True,
num_beams=5,
max_length=max_target_length, # length_penalty=0.6,
early_stopping=task == 'summarize')
top_preds = list(preds.cpu().numpy())
pred_ids.extend(top_preds)
pred_nls = [tokenizer.decode(id, skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in pred_ids]
if task == 'defect':
target_dict = {0: 'false', 1: 'true'}
golds = [target_dict[ex.target] for ex in eval_examples]
eval_acc = np.mean([int(p == g) for p, g in zip(pred_nls, golds)])
result = {'em': eval_acc, 'bleu': 0, 'codebleu': 0}
else:
dev_accs = []
predictions = []
res_dir = os.path.join(args.res_dir, cur_task)
if not os.path.exists(res_dir):
os.makedirs(res_dir)
output_fn = os.path.join(res_dir, "test_{}.output".format(criteria))
gold_fn = os.path.join(res_dir, "test_{}.gold".format(criteria))
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1:
for pred_nl, gold in zip(pred_nls, eval_examples):
dev_accs.append(pred_nl.strip() == gold.target.strip())
if task == 'summarize':
predictions.append(str(gold.idx) + '\t' + pred_nl)
f.write(str(gold.idx) + '\t' + pred_nl.strip() + '\n')
f1.write(str(gold.idx) + '\t' + gold.target.strip() + '\n')
else:
f.write(pred_nl.strip() + '\n')
f1.write(gold.target.strip() + '\n')
try:
if task == 'summarize':
(goldMap, predictionMap) = smooth_bleu.computeMaps(predictions, gold_fn)
bleu = round(smooth_bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
else:
bleu = round(_bleu(gold_fn, output_fn), 2)
if split_tag == 'test':
if task in ['summarize', 'search']:
cur_lang = sub_task
elif task in ['refine', 'concode', 'clone']:
cur_lang = 'java'
elif task == 'defect':
cur_lang = 'c'
elif task == 'translate':
cur_lang = 'c_sharp' if sub_task == 'java-cs' else 'java'
codebleu = calc_code_bleu.get_codebleu(gold_fn, output_fn, cur_lang)
except:
bleu = 0.0
codebleu = 0.0
result = {}
em = np.mean(dev_accs) * 100
result['em'] = em
result['bleu'] = bleu
if not args.task == 'summarize' and split_tag == 'test':
result['codebleu'] = codebleu * 100
logger.info("***** Eval results [%s] *****", cur_task)
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key], 4)))
return result
def main():
parser = argparse.ArgumentParser()
args = add_args(parser)
logger.info(args)
t0 = time.time()
set_dist(args)
set_seed(args)
config, model, tokenizer = build_or_load_gen_model(args)
model.to(args.device)
if args.n_gpu > 1:
# for DataParallel
model = torch.nn.DataParallel(model)
pool = multiprocessing.Pool(args.cpu_cont)
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+')
fa_dict = {}
if args.do_train:
if args.local_rank in [-1, 0] and args.data_num == -1:
summary_fn = './tensorboard/{}'.format('/'.join(args.output_dir.split('/')[1:]))
tb_writer = SummaryWriter(summary_fn)
# Prepare training data loader
train_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'train', is_sample=False)
train_data_list = [v[1] for k, v in train_examples_data_dict.items()]
all_tasks = [k for k, v in train_examples_data_dict.items()]
total_train_data_num = sum([len(v[0]) for k, v in train_examples_data_dict.items()])
for cur_task in all_tasks:
summary_dir = os.path.join(args.output_dir, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
fa_dict[cur_task] = open(os.path.join(summary_dir, '{}_summary.log'.format(cur_task)), 'a+')
train_dataloader_dict = dict()
for train_data, cur_task in zip(train_data_list, all_tasks):
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
if args.data_num == -1:
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=get_bs(cur_task, args.model_name_or_path),
num_workers=WORKER_NUM, pin_memory=True)
else:
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=get_bs(cur_task, args.model_name_or_path))
train_dataloader_dict[cur_task] = cycle(train_dataloader)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=args.max_steps)
# Start training
logger.info("***** Running training *****")
logger.info(" Total train data num = %d", total_train_data_num)
logger.info(" Max step = %d, Save step = %d", args.max_steps, args.save_steps)
dev_dataset = {}
step, global_step = 0, 0
best_bleu_em = dict([(k, -1) for k in all_tasks])
best_loss = dict([(k, 1e6) for k in all_tasks])
not_bleu_em_inc_cnt = dict([(k, 0) for k in all_tasks])
is_early_stop = dict([(k, 0) for k in all_tasks])
patience_pairs = []
for cur_task in all_tasks:
task = cur_task.split('_')[0]
if task == 'summarize':
patience_pairs.append((cur_task, 2))
elif task == 'translate':
patience_pairs.append((cur_task, 5))
elif task == 'refine':
patience_pairs.append((cur_task, 5))
elif task == 'concode':
patience_pairs.append((cur_task, 3))
elif task == 'defect':
patience_pairs.append((cur_task, 2))
patience_dict = dict(patience_pairs)
logger.info('Patience: %s', patience_dict)
probs = [len(x) for x in train_data_list]
probs = [x / sum(probs) for x in probs]
probs = [x ** 0.7 for x in probs]
probs = [x / sum(probs) for x in probs]
nb_tr_examples, nb_tr_steps, tr_nb, tr_loss, logging_loss = 0, 0, 0, 0, 0
bar = tqdm(total=args.max_steps, desc="Training")
skip_cnt = 0
while True:
cur_task = np.random.choice(all_tasks, 1, p=probs)[0]
train_dataloader = train_dataloader_dict[cur_task]
if is_early_stop[cur_task]:
skip_cnt += 1
if skip_cnt > 50:
logger.info('All tasks have early stopped at %d', step)
break
continue
else:
skip_cnt = 0
step += 1
batch = next(train_dataloader)
model.train()
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
# logger.info('cur_task: %s, bs: %d', cur_task, source_ids.shape[0])
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
# pdb.set_trace()
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
if nb_tr_steps % args.gradient_accumulation_steps == 0:
# Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
train_loss = round((tr_loss - logging_loss) / (global_step - tr_nb), 6)
bar.update(1)
bar.set_description("[{}] Train loss {}".format(step, round(train_loss, 3)))
if args.local_rank in [-1, 0] and args.log_steps > 0 and global_step % args.log_steps == 0:
logging_loss = train_loss
tr_nb = global_step
if args.do_eval and args.local_rank in [-1, 0] \
and args.save_steps > 0 and global_step % args.save_steps == 0:
# save last checkpoint
if args.data_num == -1 and args.save_last_checkpoints:
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
if global_step % 100000 == 0:
step_tag = '{}00k'.format(global_step // 100000)
last_output_dir = os.path.join(args.output_dir, 'checkpoint-step-{}'.format(step_tag))
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
# Eval model with dev dataset
if 'dev_loss' in dev_dataset:
eval_examples_data_dict = dev_dataset['dev_loss']
else:
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'dev')
dev_dataset['dev_loss'] = eval_examples_data_dict
for cur_task in eval_examples_data_dict.keys():
if is_early_stop[cur_task]:
continue
eval_examples, eval_data = eval_examples_data_dict[cur_task]
eval_sampler = SequentialSampler(eval_data)
if args.data_num == -1:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler,
batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
else:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler,
batch_size=args.eval_batch_size)
logger.info(" " + "***** Running ppl evaluation on [{}] *****".format(cur_task))
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
# Start Evaluating model
model.eval()
eval_loss, batch_num = 0, 0
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval ppl"):
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
eval_loss += loss.item()
batch_num += 1
# Pring loss of dev dataset
eval_loss = eval_loss / batch_num
result = {'cur_task': cur_task,
'global_step': global_step,
'eval_ppl': round(np.exp(eval_loss), 5),
'train_loss': round(train_loss, 5)}
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(" " + "*" * 20)
if args.data_num == -1:
tb_writer.add_scalar('dev_ppl_{}'.format(cur_task),
round(np.exp(eval_loss), 5),
global_step)
if eval_loss < best_loss[cur_task]:
logger.info(" Best ppl:%s", round(np.exp(eval_loss), 5))
logger.info(" " + "*" * 20)
fa_dict[cur_task].write(
"[%d: %s] Best ppl changed into %.4f\n" % (global_step, cur_task, np.exp(eval_loss)))
best_loss[cur_task] = eval_loss
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl', cur_task)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best ppl model into %s", output_model_file)
if args.do_eval_bleu:
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'dev',
only_src=True, is_sample=True)
for cur_task in eval_examples_data_dict.keys():
if is_early_stop[cur_task]:
continue
eval_examples, eval_data = eval_examples_data_dict[cur_task]
# pdb.set_trace()
result = eval_bleu(args, eval_data, eval_examples, model, tokenizer, 'dev', cur_task,
criteria='e{}'.format(global_step))
dev_bleu, dev_em = result['bleu'], result['em']
if args.task == 'summarize':
dev_bleu_em = dev_bleu
elif args.task in ['defect', 'clone']:
dev_bleu_em = dev_em
else:
dev_bleu_em = dev_bleu + dev_em
if args.data_num == -1:
tb_writer.add_scalar('dev_bleu_em_{}'.format(cur_task), dev_bleu_em, global_step)
if dev_bleu_em > best_bleu_em[cur_task]:
not_bleu_em_inc_cnt[cur_task] = 0
logger.info(" [%d: %s] Best bleu+em: %.2f (bleu: %.2f, em: %.2f)",
global_step, cur_task, dev_bleu_em, dev_bleu, dev_em)
logger.info(" " + "*" * 20)
best_bleu_em[cur_task] = dev_bleu_em
fa_dict[cur_task].write(
"[%d: %s] Best bleu+em changed into %.2f (bleu: %.2f, em: %.2f)\n" % (
global_step, cur_task, best_bleu_em[cur_task], dev_bleu, dev_em))
# Save best checkpoint for best bleu
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu', cur_task)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best bleu model into %s", output_model_file)
else:
not_bleu_em_inc_cnt[cur_task] += 1
logger.info("[%d %s] bleu/em does not increase for %d eval steps",
global_step, cur_task, not_bleu_em_inc_cnt[cur_task])
if not_bleu_em_inc_cnt[cur_task] > patience_dict[cur_task]:
logger.info("[%d %s] Early stop as bleu/em does not increase for %d eval steps",
global_step, cur_task, not_bleu_em_inc_cnt[cur_task])
is_early_stop[cur_task] = 1
fa_dict[cur_task].write(
"[%d %s] Early stop as bleu/em does not increase for %d eval steps, takes %s" %
(global_step, cur_task, not_bleu_em_inc_cnt[cur_task], get_elapse_time(t0)))
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if global_step >= args.max_steps:
logger.info("Reach the max step: %d", args.max_steps)
break
if args.local_rank in [-1, 0] and args.data_num == -1:
tb_writer.close()
logger.info("Finish training and take %.2f", time.time() - t0)
for cur_task in all_tasks:
fa_dict[cur_task].close()
if args.do_test:
logger.info(" " + "***** Testing *****")
logger.info(" Batch size = %d", args.eval_batch_size)
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'test', only_src=True)
all_tasks = list(eval_examples_data_dict.keys())
for cur_task in all_tasks:
summary_dir = os.path.join(args.output_dir, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
fa_dict[cur_task] = open(os.path.join(summary_dir, '{}_summary.log'.format(cur_task)), 'a+')
for cur_task in all_tasks:
eval_examples, eval_data = eval_examples_data_dict[cur_task]
args.task = cur_task.split('_')[0]
args.sub_task = cur_task.split('_')[-1]
for criteria in ['best-bleu', 'best-ppl', 'last']:
file = os.path.join(args.output_dir, 'checkpoint-{}/{}/pytorch_model.bin'.format(criteria, cur_task))
model.load_state_dict(torch.load(file))
result = eval_bleu(args, eval_data, eval_examples, model, tokenizer, 'test', cur_task, criteria)
test_bleu, test_em = result['bleu'], result['em']
test_codebleu = result['codebleu'] if 'codebleu' in result else 0
result_str = "[%s %s] bleu-4: %.2f, em: %.4f, codebleu: %.4f\n" % (
cur_task, criteria, test_bleu, test_em, test_codebleu)
logger.info(result_str)
fa_dict[cur_task].write(result_str)
fa.write(result_str)
if args.res_fn:
with open(args.res_fn, 'a+') as f:
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file))
f.write(result_str)
logger.info("Finish and take {}".format(get_elapse_time(t0)))
for cur_task in all_tasks:
fa_dict[cur_task].close()
fa.write("Finish and take {}".format(get_elapse_time(t0)))
fa.close()
if __name__ == "__main__":
main()