import argparse import pprint import os import re from tqdm import tqdm import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from human_eval.data import write_jsonl, read_problems, stream_jsonl def extract_text(prompt, remove_lines=True): token = '\"\"\"' start = token end = '>>>' start_idx = prompt.find(start) + len(start) end_idx = prompt.find(end) output = prompt[start_idx: end_idx] if remove_lines: output = output.replace('\n', ' ') output = re.sub(r"\s+", " ", output).strip() return output INSTRUCTION = """Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Create a Python script for this problem: {} ### Response:""" def main(): parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, default='Salesforce/instructcodet5p-16b', help="") parser.add_argument('--output_path', type=str, help="") parser.add_argument('--start_index', type=int, default=0, help="") parser.add_argument('--end_index', type=int, default=164, help="") parser.add_argument('--temperature', type=float, default=0.8, help="") parser.add_argument('--N', type=int, default=200, help="") parser.add_argument('--max_len', type=int, default=600, help="") parser.add_argument('--decoding_style', type=str, default='sampling', help="") parser.add_argument('--num_seqs_per_iter', type=int, default=50, help='') parser.add_argument('--overwrite', action='store_true', help='') args = parser.parse_args() argsdict = vars(args) print(pprint.pformat(argsdict)) STOP_SEQS = ['\nclass', '\ndef', '\n#', '\nif', '\nprint'] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") problems = read_problems() task_ids = sorted(problems.keys())[args.start_index: args.end_index] prompts = [problems[task_id]['prompt'] for task_id in task_ids] num_samples = len(prompts) print("Number of samples: {}".format(num_samples)) tokenizer = AutoTokenizer.from_pretrained(args.model) model = AutoModelForSeq2SeqLM.from_pretrained(args.model, trust_remote_code=True, # False for 220m and 770m models torch_dtype=torch.float16, low_cpu_mem_usage=True) model.eval() model.to(device) # for larger LLMs such as 2B, 6B, and 16B, we need to pass the text prompt to the decoder prompt_to_decoder = True if any([size in args.model for size in ['2b', '6b', '16b']]) else False print(f"Loaded {args.model}.") for i in tqdm(range(num_samples), ncols=0, total=num_samples): output_file = args.output_path + '/{}.jsonl'.format(args.start_index + i) if os.path.exists(output_file) and not args.overwrite: print(f'Skip {output_file} as it already exists') continue prompt = prompts[i].replace(' ', '\t') if args.model == 'Salesforce/instructcodet5p-16b': prompt_batch = [INSTRUCTION.format(extract_text(prompt))] prompt_batch_decoder = [INSTRUCTION.format(extract_text(prompt)) + prompt] else: prompt_batch = [prompt] prompt_batch_decoder = [prompt] ids_batch = [task_ids[i]] completion_seqs = [] encoding = tokenizer(prompt_batch, return_tensors="pt", truncation=True, max_length=args.max_len).to(device) encoding_decoder = tokenizer(prompt_batch_decoder, return_tensors="pt", truncation=True, max_length=args.max_len).to(device) if args.decoding_style == 'sampling': loops = int(args.N / args.num_seqs_per_iter) else: loops = 1 for _ in tqdm(range(loops), total=loops, leave=False, ncols=0): with torch.no_grad(): if args.decoding_style == 'sampling': if prompt_to_decoder: gen_tokens = model.generate(**encoding, decoder_input_ids=encoding_decoder['input_ids'], do_sample=True, temperature=args.temperature, max_length=args.max_len, num_return_sequences=args.num_seqs_per_iter, decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, top_p=0.95) else: gen_tokens = model.generate(**encoding, do_sample=True, temperature=args.temperature, max_length=args.max_len, num_return_sequences=args.num_seqs_per_iter, eos_token_id=tokenizer.eos_token_id, top_p=0.95) if gen_tokens is not None: if prompt_to_decoder: gen_tokens = gen_tokens[:, encoding_decoder['input_ids'].shape[-1]:] gen_seqs = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True) else: gen_seqs = None if gen_seqs is not None: assert len(ids_batch) == 1 task_id = ids_batch[0] for seq_idx, gen_seq in enumerate(gen_seqs): completion_seq = gen_seq for stop_seq in STOP_SEQS: index = completion_seq.find(stop_seq) if index != -1: completion_seq = completion_seq[:index] completion_seq = completion_seq.replace('\t', ' ') all_code = prompt.replace('\t', ' ') + completion_seq completion_seqs.append( {'task_id': task_id, 'completion': completion_seq, 'all_code': all_code # final code for evaluation with unit tests } ) print("Saving results to {}".format(output_file)) write_jsonl(output_file, completion_seqs) if __name__ == '__main__': main()