mirror of
https://github.com/salesforce/CodeT5.git
synced 2024-10-01 06:35:38 -04:00
add seq2seq finetuning example
This commit is contained in:
parent
430d7e358e
commit
a459c24048
@ -58,6 +58,16 @@ outputs = model.generate(**encoding, max_length=15)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
# How to Finetune Using Your Own Data?
|
||||
|
||||
We provide an example finetuning script `tune_codet5p_seq2seq.py` for CodeT5+ models on Seq2Seq LM task.
|
||||
After installing the `transformers` and `datasets` libraries, you can run `python tune_codet5p_seq2seq.py` to finetune CodeT5+ models on any Seq2Seq LM tasks such as Python code summarization.
|
||||
To finetune on your own data, you just need to prepare your customized cache data in the `datasets` format and pass its path to `--cache-data`.
|
||||
|
||||
|
||||
Besides, you can specify `--load` to specify the CodeT5+ model (such as `Salesforce/codet5p-220m`) to finetune from. To optimize the hyperparameter setting that suit your task best, you can customize other finetuning arguments such as `--epochs`, `--lr`, `--lr-warmup-steps`, `--max-source-len`, `--max-target-len`, `--batch-size-per-replica`, `--grad-acc-steps`, etc.
|
||||
This script supports multi-GPU training and mixed-precision training by specifying `--fp16`. If you have limited GPU memory issue, consider to use [DeepSpeed](https://github.com/microsoft/DeepSpeed) by passing a deedspeed config file after `--deepspeed` (see [here](https://huggingface.co/docs/transformers/main_classes/deepspeed#zero2-example) for an example config file).
|
||||
|
||||
# Reproduce the Results
|
||||
|
||||
## HumanEval
|
||||
|
147
CodeT5+/tune_codet5p_seq2seq.py
Normal file
147
CodeT5+/tune_codet5p_seq2seq.py
Normal file
@ -0,0 +1,147 @@
|
||||
"""
|
||||
Finetune CodeT5+ models on any Seq2Seq LM tasks
|
||||
You can customize your own training data by following the HF dataset format to cache it to args.cache_data
|
||||
Author: Yue Wang
|
||||
Date: June 2023
|
||||
"""
|
||||
|
||||
import os
|
||||
import pprint
|
||||
import argparse
|
||||
from datasets import load_dataset, load_from_disk
|
||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments, Trainer
|
||||
|
||||
|
||||
def run_training(args, model, train_data):
|
||||
print(f"Starting main loop")
|
||||
|
||||
training_args = TrainingArguments(
|
||||
report_to='tensorboard',
|
||||
output_dir=args.save_dir,
|
||||
overwrite_output_dir=False,
|
||||
|
||||
do_train=True,
|
||||
save_strategy='epoch',
|
||||
|
||||
num_train_epochs=args.epochs,
|
||||
per_device_train_batch_size=args.batch_size_per_replica,
|
||||
gradient_accumulation_steps=args.grad_acc_steps,
|
||||
|
||||
learning_rate=args.lr,
|
||||
weight_decay=0.05,
|
||||
warmup_steps=args.lr_warmup_steps,
|
||||
|
||||
logging_dir=args.save_dir,
|
||||
logging_first_step=True,
|
||||
logging_steps=args.log_freq,
|
||||
save_total_limit=1,
|
||||
|
||||
dataloader_drop_last=True,
|
||||
dataloader_num_workers=4,
|
||||
|
||||
local_rank=args.local_rank,
|
||||
deepspeed=args.deepspeed,
|
||||
fp16=args.fp16,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_data,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
|
||||
if args.local_rank in [0, -1]:
|
||||
final_checkpoint_dir = os.path.join(args.save_dir, "final_checkpoint")
|
||||
model.save_pretrained(final_checkpoint_dir)
|
||||
print(f' ==> Finish training and save to {final_checkpoint_dir}')
|
||||
|
||||
|
||||
def load_tokenize_data(args):
|
||||
# Load and tokenize data
|
||||
if os.path.exists(args.cache_data):
|
||||
train_data = load_from_disk(args.cache_data)
|
||||
print(f' ==> Loaded {len(train_data)} samples')
|
||||
return train_data
|
||||
else:
|
||||
# Example code to load and process code_x_glue_ct_code_to_text python dataset for code summarization task
|
||||
datasets = load_dataset("code_x_glue_ct_code_to_text", 'python', split="train")
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.load)
|
||||
|
||||
def preprocess_function(examples):
|
||||
source = [' '.join(ex) for ex in examples["code_tokens"]]
|
||||
target = [' '.join(ex) for ex in examples["docstring_tokens"]]
|
||||
|
||||
model_inputs = tokenizer(source, max_length=args.max_source_len, padding="max_length", truncation=True)
|
||||
labels = tokenizer(target, max_length=args.max_target_len, padding="max_length", truncation=True)
|
||||
|
||||
model_inputs["labels"] = labels["input_ids"].copy()
|
||||
model_inputs["labels"] = [
|
||||
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in model_inputs["labels"]
|
||||
]
|
||||
return model_inputs
|
||||
|
||||
train_data = datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
remove_columns=datasets.column_names,
|
||||
num_proc=64,
|
||||
load_from_cache_file=False,
|
||||
)
|
||||
print(f' ==> Loaded {len(train_data)} samples')
|
||||
train_data.save_to_disk(args.cache_data)
|
||||
print(f' ==> Saved to {args.cache_data}')
|
||||
return train_data
|
||||
|
||||
|
||||
def main(args):
|
||||
argsdict = vars(args)
|
||||
print(pprint.pformat(argsdict))
|
||||
|
||||
# Save command to file
|
||||
with open(os.path.join(args.save_dir, "command.txt"), 'w') as f:
|
||||
f.write(pprint.pformat(argsdict))
|
||||
|
||||
# Load and tokenize data using the tokenizer from `args.load`. If the data is already cached, load it from there.
|
||||
# You can customize this function to load your own data for any Seq2Seq LM tasks.
|
||||
train_data = load_tokenize_data(args)
|
||||
|
||||
if args.data_num != -1:
|
||||
train_data = train_data.select([i for i in range(args.data_num)])
|
||||
|
||||
# Load model from `args.load`
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(args.load)
|
||||
print(f" ==> Loaded model from {args.load}, model size {model.num_parameters()}")
|
||||
|
||||
run_training(args, model, train_data)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="CodeT5+ finetuning on Seq2Seq LM task")
|
||||
parser.add_argument('--data-num', default=-1, type=int)
|
||||
parser.add_argument('--max-source-len', default=320, type=int)
|
||||
parser.add_argument('--max-target-len', default=128, type=int)
|
||||
parser.add_argument('--cache-data', default='cache_data/summarize_python', type=str)
|
||||
parser.add_argument('--load', default='Salesforce/codet5p-220m', type=str)
|
||||
|
||||
# Training
|
||||
parser.add_argument('--epochs', default=10, type=int)
|
||||
parser.add_argument('--lr', default=5e-5, type=float)
|
||||
parser.add_argument('--lr-warmup-steps', default=200, type=int)
|
||||
parser.add_argument('--batch-size-per-replica', default=8, type=int)
|
||||
parser.add_argument('--grad-acc-steps', default=4, type=int)
|
||||
parser.add_argument('--local_rank', default=-1, type=int)
|
||||
parser.add_argument('--deepspeed', default=None, type=str)
|
||||
parser.add_argument('--fp16', default=False, action='store_true')
|
||||
|
||||
# Logging and stuff
|
||||
parser.add_argument('--save-dir', default="saved_models/summarize_python", type=str)
|
||||
parser.add_argument('--log-freq', default=10, type=int)
|
||||
parser.add_argument('--save-freq', default=500, type=int)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
os.makedirs(args.save_dir, exist_ok=True)
|
||||
|
||||
main(args)
|
Loading…
Reference in New Issue
Block a user