add instruction tuning script

This commit is contained in:
WANG Yue 2023-06-24 16:05:51 +08:00
parent d929a71f98
commit 9fd9e893b7
4 changed files with 316 additions and 0 deletions

View File

@ -58,6 +58,20 @@ outputs = model.generate(**encoding, max_length=15)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
# Instruction Tuning to Align with Natural Language Instructions
We explore instruction tuning to align CodeT5+ with natural language instructions following [Code Alpaca](https://github.com/sahil280114/codealpaca). First download the instruction data `code_alpaca_20k.json` from [here](https://github.com/sahil280114/codealpaca/tree/master/data).
Then, you can run the following command to finetune CodeT5+ 16B on the instruction data.
```bash
MODEL=Salesforce/codet5p-16b
SAVE_DIR=saved_models/instructcodet5p-16b
deepspeed instruct_tune_codet5p.py \
--load $MODEL --save-dir $SAVE_DIR --instruct-data-path code_alpaca_20k.json \
--fp16 --deepspeed deepspeed_config.json
```
# How to Finetune Using Your Own Data?
We provide an example finetuning script [tune_codet5p_seq2seq.py](https://github.com/salesforce/CodeT5/blob/main/CodeT5%2B/tune_codet5p_seq2seq.py) for CodeT5+ models on Seq2Seq LM task.
@ -81,9 +95,50 @@ You can select the model to generate from by changing the `model` variable in th
Following the original setting in the HumanEval paper, we generate 200 programs (`pred_num=200`) for each problem and employs nucleus sampling with different temperature `T` for computing `pass@k` (`T=0.2,0.6,0.8` for `k=1,10,100` respectively).
The generated programs will be saved in `preds/${model}_T${T}_N${pred_num}`.
```bash
model=instructcodet5p-16b
temp=0.2
max_len=800
pred_num=200
num_seqs_per_iter=2 # 25 for 350M and 770M, 10 for 2B, 8 for 6B, 2 for 16B on A100-40G
output_path=preds/${model}_T${temp}_N${pred_num}
mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model
# 164 problems, 21 per GPU if GPU=8
index=0
gpu_num=8
for ((i = 0; i < $gpu_num; i++)); do
start_index=$((i * 21))
end_index=$(((i + 1) * 21))
gpu=$((i))
echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
((index++))
(
CUDA_VISIBLE_DEVICES=$gpu python generate_codet5p.py --model Salesforce/${model} \
--start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path}
) &
if (($index % $gpu_num == 0)); then wait; fi
done
```
### Evaluating pass@k
`cd humaneval` then run the evaluation via `bash run_eval.sh`.
```bash
output_path=preds/instructcodet5p-16b_T0.2_N200
echo 'Output path: '$output_path
python process_preds.py --path ${output_path} --out_path ${output_path}.jsonl
evaluate_functional_correctness ${output_path}.jsonl
```
# Citation
```bibtex

View File

@ -0,0 +1,52 @@
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 1e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 1e8,
"contiguous_gradients": true,
"round_robin_gradients": true
},
"zero_allow_untested_optimizer": true,
"dump_state": false,
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false,
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"last_batch_iteration": -1,
"total_num_steps": "auto",
"warmup_min_lr": 1e-5,
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"warmup_type": "linear"
}
}
}

View File

@ -0,0 +1,209 @@
"""
Finetune CodeT5+ models on instruction tuning data
You can customize your own training data by following the HF dataset format to cache it to args.cache_data
Author: Yue Wang
Date: June 2023
"""
import os
import pprint
import argparse
import numpy as np
import copy
import torch
from datasets import load_dataset, load_from_disk
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments, Trainer
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
def get_model_size(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
model_size = sum([np.prod(p.size()) for p in model_parameters])
return "{}M".format(round(model_size / 1e+6))
def freeze_decoder_except_xattn_codegen(model):
print(f'Para before freezing: {model.num_parameters()}, trainable para: {get_model_size(model)}')
for param in model.decoder.parameters():
param.requires_grad = False
num_decoder_layers = model.decoder.config.n_layer
for i in range(num_decoder_layers):
each_decoder_layer = model.decoder.transformer.h[i]
if hasattr(each_decoder_layer, 'crossattention'):
for param in each_decoder_layer.crossattention.parameters():
param.requires_grad = True
each_decoder_layer.crossattention.to(torch.float32)
if hasattr(each_decoder_layer, 'alpha_xattn'):
each_decoder_layer.alpha_xattn.requires_grad = True
print(f'Para after freezing: {model.num_parameters()}, trainable para: {get_model_size(model)}')
def run_training(args, model, train_data):
print(f"Starting main loop")
training_args = TrainingArguments(
report_to='tensorboard',
output_dir=args.save_dir,
overwrite_output_dir=False,
do_train=True,
save_strategy='epoch',
num_train_epochs=args.epochs,
per_device_train_batch_size=args.batch_size_per_replica,
gradient_accumulation_steps=args.grad_acc_steps,
learning_rate=args.lr,
weight_decay=0.0,
warmup_steps=args.lr_warmup_steps,
logging_dir=args.save_dir,
logging_first_step=True,
logging_steps=args.log_freq,
save_total_limit=2,
dataloader_drop_last=True,
dataloader_num_workers=4,
local_rank=args.local_rank,
deepspeed=args.deepspeed,
fp16=args.fp16,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_data,
)
trainer.train()
if args.local_rank in [0, -1]:
final_checkpoint_dir = os.path.join(args.save_dir, "final_checkpoint")
model.save_pretrained(final_checkpoint_dir)
print(f' ==> Finish training and save to {final_checkpoint_dir}')
def load_tokenize_data(args):
# Load and tokenize data
if os.path.exists(args.cache_data):
train_data = load_from_disk(args.cache_data)
print(f' ==> Loaded {len(train_data)} samples')
return train_data
else:
datasets = load_dataset('json', data_files=args.instruct_data_path)['train']
tokenizer = AutoTokenizer.from_pretrained(args.load)
def preprocess_function(examples):
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
source = [prompt_input.format_map({'instruction': instruct, 'input': inp}) if inp != ''
else prompt_no_input.format_map({'instruction': instruct})
for instruct, inp in zip(examples["instruction"], examples["input"])]
target = [src + output + tokenizer.eos_token for src, output in zip(source, examples["output"])]
model_inputs = tokenizer(source, max_length=args.max_len, padding="max_length", truncation=True)
labels = tokenizer(target, max_length=args.max_len, padding="max_length", truncation=True)
model_inputs["decoder_input_ids"] = copy.deepcopy(labels["input_ids"])
# changing labels: convert all tokens in the duplicate prefix prompt and the padding part to -100
eos_token_id = tokenizer.eos_token_id
for x, y in zip(model_inputs["input_ids"], labels["input_ids"]):
label_prefix_len = x.index(eos_token_id) if eos_token_id in x else len(x)
y[:label_prefix_len] = [-100] * label_prefix_len
if eos_token_id in y:
pad_len = len(y) - y.index(eos_token_id) - 1
if pad_len > 0:
y[y.index(eos_token_id) + 1:] = [-100] * pad_len
# shift labels to the right as the decoder input and add decoder start token id
decoder_start_id = tokenizer.eos_token_id
for z in model_inputs["decoder_input_ids"]:
z[1:] = z[:-1]
z[0] = decoder_start_id
model_inputs["labels"] = copy.deepcopy(labels["input_ids"])
model_inputs["decoder_attention_mask"] = labels["attention_mask"]
return model_inputs
train_data = datasets.map(
preprocess_function,
batched=True,
remove_columns=datasets.column_names,
num_proc=64,
load_from_cache_file=False,
)
print(f' ==> Loaded {len(train_data)} samples')
train_data.save_to_disk(args.cache_data)
print(f' ==> Saved to {args.cache_data}')
return train_data
def main(args):
argsdict = vars(args)
print(pprint.pformat(argsdict))
# Save command to file
with open(os.path.join(args.save_dir, "command.txt"), 'w') as f:
f.write(pprint.pformat(argsdict))
# Load and tokenize data using the tokenizer from `args.load`. If the data is already cached, load it from there.
# You can customize this function to load your own data for any Seq2Seq LM tasks.
train_data = load_tokenize_data(args)
if args.data_num != -1:
train_data = train_data.select([i for i in range(args.data_num)])
# Load model from `args.load`
model = AutoModelForSeq2SeqLM.from_pretrained(args.load, torch_dtype=torch.float16,
low_cpu_mem_usage=True, trust_remote_code=True)
print(f" ==> Loaded model from {args.load}, model size {model.num_parameters()}")
freeze_decoder_except_xattn_codegen(model)
run_training(args, model, train_data)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="CodeT5+ instruction tuning")
parser.add_argument('--data-num', default=-1, type=int)
parser.add_argument('--max-len', default=512, type=int)
parser.add_argument('--instruct-data-path', default='code_alpaca_20k.json', type=str)
parser.add_argument('--cache-data', default='cache_data/instructions', type=str)
parser.add_argument('--load', default='Salesforce/codet5p-16b', type=str)
# Training
parser.add_argument('--epochs', default=3, type=int)
parser.add_argument('--lr', default=2e-5, type=float)
parser.add_argument('--lr-warmup-steps', default=30, type=int)
parser.add_argument('--batch-size-per-replica', default=1, type=int)
parser.add_argument('--grad-acc-steps', default=16, type=int)
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--deepspeed', default=None, type=str)
parser.add_argument('--fp16', default=False, action='store_true')
# Logging and stuff
parser.add_argument('--save-dir', default="saved_models/instruct_codet5p_16b", type=str)
parser.add_argument('--log-freq', default=10, type=int)
parser.add_argument('--save-freq', default=500, type=int)
args = parser.parse_args()
os.makedirs(args.save_dir, exist_ok=True)
main(args)