mirror of
https://github.com/salesforce/CodeT5.git
synced 2024-10-01 06:35:38 -04:00
third full commit
This commit is contained in:
parent
f06716dfe6
commit
208acbd759
12
LICENSE.txt
Normal file
12
LICENSE.txt
Normal file
@ -0,0 +1,12 @@
|
||||
Copyright (c) 2021, Salesforce.com, Inc.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of Salesforce.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
590
evaluator/CodeBLEU/bleu.py
Normal file
590
evaluator/CodeBLEU/bleu.py
Normal file
@ -0,0 +1,590 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Natural Language Toolkit: BLEU Score
|
||||
#
|
||||
# Copyright (C) 2001-2020 NLTK Project
|
||||
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
||||
# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
|
||||
# URL: <http://nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
"""BLEU score implementation."""
|
||||
|
||||
import math
|
||||
import sys
|
||||
from fractions import Fraction
|
||||
import warnings
|
||||
from collections import Counter
|
||||
|
||||
from evaluator.CodeBLEU.utils import ngrams
|
||||
import pdb
|
||||
|
||||
|
||||
def sentence_bleu(
|
||||
references,
|
||||
hypothesis,
|
||||
weights=(0.25, 0.25, 0.25, 0.25),
|
||||
smoothing_function=None,
|
||||
auto_reweigh=False,
|
||||
):
|
||||
"""
|
||||
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
||||
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
||||
"BLEU: a method for automatic evaluation of machine translation."
|
||||
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
||||
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
||||
... 'that', 'party', 'direct']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
||||
... 'heed', 'Party', 'commands']
|
||||
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the',
|
||||
... 'Party']
|
||||
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
||||
0.5045...
|
||||
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
||||
value 0. This is because the precision for the order of n-grams without
|
||||
overlap is 0, and the geometric mean in the final BLEU score computation
|
||||
multiplies the 0 with the precision of other n-grams. This results in 0
|
||||
(independently of the precision of the othe n-gram orders). The following
|
||||
example has zero 3-gram and 4-gram overlaps:
|
||||
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
||||
0.0
|
||||
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
||||
function can be used.
|
||||
>>> chencherry = SmoothingFunction()
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
||||
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
||||
0.0370...
|
||||
The default BLEU calculates a score for up to 4-grams using uniform
|
||||
weights (this is called BLEU-4). To evaluate your translations with
|
||||
higher/lower order ngrams, use customized weights. E.g. when accounting
|
||||
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
||||
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
||||
0.3920...
|
||||
:param references: reference sentences
|
||||
:type references: list(list(str))
|
||||
:param hypothesis: a hypothesis sentence
|
||||
:type hypothesis: list(str)
|
||||
:param weights: weights for unigrams, bigrams, trigrams and so on
|
||||
:type weights: list(float)
|
||||
:param smoothing_function:
|
||||
:type smoothing_function: SmoothingFunction
|
||||
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
||||
:type auto_reweigh: bool
|
||||
:return: The sentence-level BLEU score.
|
||||
:rtype: float
|
||||
"""
|
||||
return corpus_bleu(
|
||||
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
||||
)
|
||||
|
||||
|
||||
def corpus_bleu(
|
||||
list_of_references,
|
||||
hypotheses,
|
||||
weights=(0.25, 0.25, 0.25, 0.25),
|
||||
smoothing_function=None,
|
||||
auto_reweigh=False,
|
||||
):
|
||||
"""
|
||||
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
||||
the hypotheses and their respective references.
|
||||
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
||||
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
||||
the micro-average precision (i.e. summing the numerators and denominators
|
||||
for each hypothesis-reference(s) pairs before the division).
|
||||
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
||||
... 'heed', 'Party', 'commands']
|
||||
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
||||
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
||||
... 'interested', 'in', 'world', 'history']
|
||||
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
||||
... 'because', 'he', 'read', 'the', 'book']
|
||||
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
||||
>>> hypotheses = [hyp1, hyp2]
|
||||
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
||||
0.5920...
|
||||
The example below show that corpus_bleu() is different from averaging
|
||||
sentence_bleu() for hypotheses
|
||||
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
||||
>>> score2 = sentence_bleu([ref2a], hyp2)
|
||||
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
||||
0.6223...
|
||||
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
||||
:type list_of_references: list(list(list(str)))
|
||||
:param hypotheses: a list of hypothesis sentences
|
||||
:type hypotheses: list(list(str))
|
||||
:param weights: weights for unigrams, bigrams, trigrams and so on
|
||||
:type weights: list(float)
|
||||
:param smoothing_function:
|
||||
:type smoothing_function: SmoothingFunction
|
||||
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
||||
:type auto_reweigh: bool
|
||||
:return: The corpus-level BLEU score.
|
||||
:rtype: float
|
||||
"""
|
||||
# Before proceeding to compute BLEU, perform sanity checks.
|
||||
|
||||
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
||||
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
||||
hyp_lengths, ref_lengths = 0, 0
|
||||
|
||||
assert len(list_of_references) == len(hypotheses), (
|
||||
"The number of hypotheses and their reference(s) should be the " "same "
|
||||
)
|
||||
|
||||
# Iterate through each hypothesis and their corresponding references.
|
||||
for references, hypothesis in zip(list_of_references, hypotheses):
|
||||
# For each order of ngram, calculate the numerator and
|
||||
# denominator for the corpus-level modified precision.
|
||||
for i, _ in enumerate(weights, start=1):
|
||||
p_i = modified_precision(references, hypothesis, i)
|
||||
p_numerators[i] += p_i.numerator
|
||||
p_denominators[i] += p_i.denominator
|
||||
|
||||
# Calculate the hypothesis length and the closest reference length.
|
||||
# Adds them to the corpus-level hypothesis and reference counts.
|
||||
hyp_len = len(hypothesis)
|
||||
hyp_lengths += hyp_len
|
||||
ref_lengths += closest_ref_length(references, hyp_len)
|
||||
|
||||
# Calculate corpus-level brevity penalty.
|
||||
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
||||
|
||||
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
||||
# order of n-grams < 4 and weights is set at default.
|
||||
if auto_reweigh:
|
||||
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
||||
weights = (1 / hyp_lengths,) * hyp_lengths
|
||||
|
||||
# Collects the various precision values for the different ngram orders.
|
||||
p_n = [
|
||||
Fraction(p_numerators[i], p_denominators[i], _normalize=False)
|
||||
for i, _ in enumerate(weights, start=1)
|
||||
]
|
||||
|
||||
# Returns 0 if there's no matching n-grams
|
||||
# We only need to check for p_numerators[1] == 0, since if there's
|
||||
# no unigrams, there won't be any higher order ngrams.
|
||||
if p_numerators[1] == 0:
|
||||
return 0
|
||||
|
||||
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
||||
if not smoothing_function:
|
||||
smoothing_function = SmoothingFunction().method1
|
||||
# Smoothen the modified precision.
|
||||
# Note: smoothing_function() may convert values into floats;
|
||||
# it tries to retain the Fraction object as much as the
|
||||
# smoothing method allows.
|
||||
p_n = smoothing_function(
|
||||
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
||||
)
|
||||
s = (w_i * math.log(p_i) for w_i, p_i in zip(weights, p_n))
|
||||
s = bp * math.exp(math.fsum(s))
|
||||
return s
|
||||
|
||||
|
||||
def modified_precision(references, hypothesis, n):
|
||||
"""
|
||||
Calculate modified ngram precision.
|
||||
The normal precision method may lead to some wrong translations with
|
||||
high-precision, e.g., the translation, in which a word of reference
|
||||
repeats several times, has very high precision.
|
||||
This function only returns the Fraction object that contains the numerator
|
||||
and denominator necessary to calculate the corpus-level precision.
|
||||
To calculate the modified precision for a single pair of hypothesis and
|
||||
references, cast the Fraction object into a float.
|
||||
The famous "the the the ... " example shows that you can get BLEU precision
|
||||
by duplicating high frequency words.
|
||||
>>> reference1 = 'the cat is on the mat'.split()
|
||||
>>> reference2 = 'there is a cat on the mat'.split()
|
||||
>>> hypothesis1 = 'the the the the the the the'.split()
|
||||
>>> references = [reference1, reference2]
|
||||
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
||||
0.2857...
|
||||
In the modified n-gram precision, a reference word will be considered
|
||||
exhausted after a matching hypothesis word is identified, e.g.
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will',
|
||||
... 'forever', 'heed', 'Party', 'commands']
|
||||
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the',
|
||||
... 'Party']
|
||||
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> hypothesis = 'of the'.split()
|
||||
>>> references = [reference1, reference2, reference3]
|
||||
>>> float(modified_precision(references, hypothesis, n=1))
|
||||
1.0
|
||||
>>> float(modified_precision(references, hypothesis, n=2))
|
||||
1.0
|
||||
An example of a normal machine translation hypothesis:
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
||||
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
||||
... 'that', 'party', 'direct']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will',
|
||||
... 'forever', 'heed', 'Party', 'commands']
|
||||
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the',
|
||||
... 'Party']
|
||||
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> references = [reference1, reference2, reference3]
|
||||
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
||||
0.9444...
|
||||
>>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS
|
||||
0.5714...
|
||||
>>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS
|
||||
0.5882352941176471
|
||||
>>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS
|
||||
0.07692...
|
||||
:param references: A list of reference translations.
|
||||
:type references: list(list(str))
|
||||
:param hypothesis: A hypothesis translation.
|
||||
:type hypothesis: list(str)
|
||||
:param n: The ngram order.
|
||||
:type n: int
|
||||
:return: BLEU's modified precision for the nth order ngram.
|
||||
:rtype: Fraction
|
||||
"""
|
||||
# Extracts all ngrams in hypothesis
|
||||
# Set an empty Counter if hypothesis is empty.
|
||||
|
||||
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
||||
# Extract a union of references' counts.
|
||||
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
||||
max_counts = {}
|
||||
for reference in references:
|
||||
reference_counts = (
|
||||
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
||||
)
|
||||
for ngram in counts:
|
||||
max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram])
|
||||
|
||||
# Assigns the intersection between hypothesis and references' counts.
|
||||
clipped_counts = {
|
||||
ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
||||
}
|
||||
|
||||
numerator = sum(clipped_counts.values())
|
||||
# Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
||||
# Usually this happens when the ngram order is > len(reference).
|
||||
denominator = max(1, sum(counts.values()))
|
||||
|
||||
return Fraction(numerator, denominator, _normalize=False)
|
||||
|
||||
|
||||
def closest_ref_length(references, hyp_len):
|
||||
"""
|
||||
This function finds the reference that is the closest length to the
|
||||
hypothesis. The closest reference length is referred to as *r* variable
|
||||
from the brevity penalty formula in Papineni et. al. (2002)
|
||||
:param references: A list of reference translations.
|
||||
:type references: list(list(str))
|
||||
:param hyp_len: The length of the hypothesis.
|
||||
:type hyp_len: int
|
||||
:return: The length of the reference that's closest to the hypothesis.
|
||||
:rtype: int
|
||||
"""
|
||||
ref_lens = (len(reference) for reference in references)
|
||||
closest_ref_len = min(
|
||||
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
||||
)
|
||||
return closest_ref_len
|
||||
|
||||
|
||||
def brevity_penalty(closest_ref_len, hyp_len):
|
||||
"""
|
||||
Calculate brevity penalty.
|
||||
As the modified n-gram precision still has the problem from the short
|
||||
length sentence, brevity penalty is used to modify the overall BLEU
|
||||
score according to length.
|
||||
An example from the paper. There are three references with length 12, 15
|
||||
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
||||
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
||||
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
||||
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
||||
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
||||
>>> references = [reference1, reference2, reference3]
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
1.0
|
||||
In case a hypothesis translation is shorter than the references, penalty is
|
||||
applied.
|
||||
>>> references = [['a'] * 28, ['a'] * 28]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
0.2635971381157267
|
||||
The length of the closest reference is used to compute the penalty. If the
|
||||
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
||||
penalty is applied because the hypothesis length (12) is less then the
|
||||
closest reference length (13).
|
||||
>>> references = [['a'] * 13, ['a'] * 2]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
||||
0.9200...
|
||||
The brevity penalty doesn't depend on reference order. More importantly,
|
||||
when two reference sentences are at the same distance, the shortest
|
||||
reference sentence length is used.
|
||||
>>> references = [['a'] * 13, ['a'] * 11]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
||||
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
||||
>>> bp1 == bp2 == 1
|
||||
True
|
||||
A test example from mteval-v13a.pl (starting from the line 705):
|
||||
>>> references = [['a'] * 11, ['a'] * 8]
|
||||
>>> hypothesis = ['a'] * 7
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
||||
0.8668...
|
||||
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
||||
>>> hypothesis = ['a'] * 7
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
1.0
|
||||
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
||||
sum of all the hypotheses' lengths for a corpus
|
||||
:type hyp_len: int
|
||||
:param closest_ref_len: The length of the closest reference for a single
|
||||
hypothesis OR the sum of all the closest references for every hypotheses.
|
||||
:type closest_ref_len: int
|
||||
:return: BLEU's brevity penalty.
|
||||
:rtype: float
|
||||
"""
|
||||
if hyp_len > closest_ref_len:
|
||||
return 1
|
||||
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
||||
elif hyp_len == 0:
|
||||
return 0
|
||||
else:
|
||||
return math.exp(1 - closest_ref_len / hyp_len)
|
||||
|
||||
|
||||
class SmoothingFunction:
|
||||
"""
|
||||
This is an implementation of the smoothing techniques
|
||||
for segment-level BLEU scores that was presented in
|
||||
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
||||
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
||||
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
||||
"""
|
||||
This will initialize the parameters required for the various smoothing
|
||||
techniques, the default values are set to the numbers used in the
|
||||
experiments from Chen and Cherry (2014).
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
||||
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
||||
... 'commands', 'of', 'the', 'party']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
||||
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
||||
... 'Party', 'commands']
|
||||
>>> chencherry = SmoothingFunction()
|
||||
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
||||
0.4489...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
||||
0.4905...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
||||
0.4135...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
||||
0.4905...
|
||||
:param epsilon: the epsilon value use in method 1
|
||||
:type epsilon: float
|
||||
:param alpha: the alpha value use in method 6
|
||||
:type alpha: int
|
||||
:param k: the k value use in method 4
|
||||
:type k: int
|
||||
"""
|
||||
self.epsilon = epsilon
|
||||
self.alpha = alpha
|
||||
self.k = k
|
||||
|
||||
def method0(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
No smoothing.
|
||||
"""
|
||||
p_n_new = []
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator != 0:
|
||||
p_n_new.append(p_i)
|
||||
else:
|
||||
_msg = str(
|
||||
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
||||
"Therefore the BLEU score evaluates to 0, independently of\n"
|
||||
"how many N-gram overlaps of lower order it contains.\n"
|
||||
"Consider using lower n-gram order or use "
|
||||
"SmoothingFunction()"
|
||||
).format(i + 1)
|
||||
warnings.warn(_msg)
|
||||
# When numerator==0 where denonminator==0 or !=0, the result
|
||||
# for the precision score should be equal to 0 or undefined.
|
||||
# Due to BLEU geometric mean computation in logarithm space,
|
||||
# we we need to take the return sys.float_info.min such that
|
||||
# math.log(sys.float_info.min) returns a 0 precision score.
|
||||
p_n_new.append(sys.float_info.min)
|
||||
return p_n_new
|
||||
|
||||
def method1(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
||||
"""
|
||||
return [
|
||||
(p_i.numerator + self.epsilon) / p_i.denominator
|
||||
if p_i.numerator == 0
|
||||
else p_i
|
||||
for p_i in p_n
|
||||
]
|
||||
|
||||
def method2(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 2: Add 1 to both numerator and denominator from
|
||||
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
||||
machine translation quality using longest common subsequence and
|
||||
skip-bigram statistics. In ACL04.
|
||||
"""
|
||||
return [
|
||||
Fraction(p_i.numerator + 1, p_i.denominator + 1, _normalize=False)
|
||||
for p_i in p_n
|
||||
]
|
||||
|
||||
def method3(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 3: NIST geometric sequence smoothing
|
||||
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
||||
precision score whose matching n-gram count is null.
|
||||
k is 1 for the first 'n' value for which the n-gram match count is null/
|
||||
For example, if the text contains:
|
||||
- one 2-gram match
|
||||
- and (consequently) two 1-gram matches
|
||||
the n-gram count for each individual precision score would be:
|
||||
- n=1 => prec_count = 2 (two unigrams)
|
||||
- n=2 => prec_count = 1 (one bigram)
|
||||
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
||||
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
||||
"""
|
||||
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator == 0:
|
||||
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
||||
incvnt += 1
|
||||
return p_n
|
||||
|
||||
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 4:
|
||||
Shorter translations may have inflated precision values due to having
|
||||
smaller denominators; therefore, we give them proportionally
|
||||
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
||||
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator == 0 and hyp_len != 0:
|
||||
incvnt = i + 1 * self.k / math.log(
|
||||
hyp_len
|
||||
) # Note that this K is different from the K from NIST.
|
||||
p_n[i] = incvnt / p_i.denominator
|
||||
return p_n
|
||||
|
||||
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 5:
|
||||
The matched counts for similar values of n should be similar. To a
|
||||
calculate the n-gram matched count, it averages the n−1, n and n+1 gram
|
||||
matched counts.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
m = {}
|
||||
# Requires an precision value for an addition ngram order.
|
||||
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
||||
m[-1] = p_n[0] + 1
|
||||
for i, p_i in enumerate(p_n):
|
||||
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
||||
m[i] = p_n[i]
|
||||
return p_n
|
||||
|
||||
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 6:
|
||||
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
||||
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
||||
between pn and pn−1 will be the same as that between pn−1 and pn−2; from
|
||||
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
||||
Gradient Ascent. In NAACL.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
# This smoothing only works when p_1 and p_2 is non-zero.
|
||||
# Raise an error with an appropriate message when the input is too short
|
||||
# to use this smoothing technique.
|
||||
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
||||
for i, p_i in enumerate(p_n):
|
||||
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
||||
continue
|
||||
else:
|
||||
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
||||
# No. of ngrams in translation that matches the reference.
|
||||
m = p_i.numerator
|
||||
# No. of ngrams in translation.
|
||||
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
||||
# Calculates the interpolated precision.
|
||||
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
||||
return p_n
|
||||
|
||||
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 7:
|
||||
Interpolates methods 4 and 5.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
||||
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
||||
return p_n
|
80
evaluator/CodeBLEU/calc_code_bleu.py
Normal file
80
evaluator/CodeBLEU/calc_code_bleu.py
Normal file
@ -0,0 +1,80 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# -*- coding:utf-8 -*-
|
||||
import argparse
|
||||
from evaluator.CodeBLEU import bleu, weighted_ngram_match, syntax_match, dataflow_match
|
||||
# import evaluator.CodeBLEU.weighted_ngram_match
|
||||
# import evaluator.CodeBLEU.syntax_match
|
||||
# import evaluator.CodeBLEU.dataflow_match
|
||||
|
||||
|
||||
def get_codebleu(refs, hyp, lang, params='0.25,0.25,0.25,0.25'):
|
||||
if not isinstance(refs, list):
|
||||
refs = [refs]
|
||||
alpha, beta, gamma, theta = [float(x) for x in params.split(',')]
|
||||
|
||||
# preprocess inputs
|
||||
pre_references = [[x.strip() for x in open(file, 'r', encoding='utf-8').readlines()] for file in refs]
|
||||
hypothesis = [x.strip() for x in open(hyp, 'r', encoding='utf-8').readlines()]
|
||||
|
||||
for i in range(len(pre_references)):
|
||||
assert len(hypothesis) == len(pre_references[i])
|
||||
|
||||
references = []
|
||||
for i in range(len(hypothesis)):
|
||||
ref_for_instance = []
|
||||
for j in range(len(pre_references)):
|
||||
ref_for_instance.append(pre_references[j][i])
|
||||
references.append(ref_for_instance)
|
||||
assert len(references) == len(pre_references) * len(hypothesis)
|
||||
|
||||
# calculate ngram match (BLEU)
|
||||
tokenized_hyps = [x.split() for x in hypothesis]
|
||||
tokenized_refs = [[x.split() for x in reference] for reference in references]
|
||||
|
||||
ngram_match_score = bleu.corpus_bleu(tokenized_refs, tokenized_hyps)
|
||||
|
||||
# calculate weighted ngram match
|
||||
keywords = [x.strip() for x in open('/export/share/wang.y/workspace/CodeT5Full/finetune/evaluator/CodeBLEU/keywords/' + lang + '.txt', 'r', encoding='utf-8').readlines()]
|
||||
|
||||
def make_weights(reference_tokens, key_word_list):
|
||||
return {token: 1 if token in key_word_list else 0.2 for token in reference_tokens}
|
||||
|
||||
tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)] \
|
||||
for reference_tokens in reference] for reference in tokenized_refs]
|
||||
|
||||
weighted_ngram_match_score = weighted_ngram_match.corpus_bleu(tokenized_refs_with_weights, tokenized_hyps)
|
||||
|
||||
# calculate syntax match
|
||||
syntax_match_score = syntax_match.corpus_syntax_match(references, hypothesis, lang)
|
||||
|
||||
# calculate dataflow match
|
||||
dataflow_match_score = dataflow_match.corpus_dataflow_match(references, hypothesis, lang)
|
||||
|
||||
print('ngram match: {0}, weighted ngram match: {1}, syntax_match: {2}, dataflow_match: {3}'. \
|
||||
format(ngram_match_score, weighted_ngram_match_score, syntax_match_score, dataflow_match_score))
|
||||
|
||||
code_bleu_score = alpha * ngram_match_score \
|
||||
+ beta * weighted_ngram_match_score \
|
||||
+ gamma * syntax_match_score \
|
||||
+ theta * dataflow_match_score
|
||||
|
||||
return code_bleu_score
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--refs', type=str, nargs='+', required=True,
|
||||
help='reference files')
|
||||
parser.add_argument('--hyp', type=str, required=True,
|
||||
help='hypothesis file')
|
||||
parser.add_argument('--lang', type=str, required=True,
|
||||
choices=['java', 'js', 'c_sharp', 'php', 'go', 'python', 'ruby'],
|
||||
help='programming language')
|
||||
parser.add_argument('--params', type=str, default='0.25,0.25,0.25,0.25',
|
||||
help='alpha, beta and gamma')
|
||||
|
||||
args = parser.parse_args()
|
||||
code_bleu_score = get_codebleu(args.refs, args.hyp, args.lang, args.params)
|
||||
print('CodeBLEU score: ', code_bleu_score)
|
148
evaluator/CodeBLEU/dataflow_match.py
Normal file
148
evaluator/CodeBLEU/dataflow_match.py
Normal file
@ -0,0 +1,148 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
from evaluator.CodeBLEU.parser import DFG_python, DFG_java, DFG_ruby, DFG_go, DFG_php, DFG_javascript, DFG_csharp
|
||||
from evaluator.CodeBLEU.parser import (remove_comments_and_docstrings,
|
||||
tree_to_token_index,
|
||||
index_to_code_token,
|
||||
tree_to_variable_index)
|
||||
from tree_sitter import Language, Parser
|
||||
import pdb
|
||||
|
||||
parser_path = '/export/share/wang.y/workspace/CodeT5Full/finetune/evaluator/CodeBLEU/parser'
|
||||
dfg_function = {
|
||||
'python': DFG_python,
|
||||
'java': DFG_java,
|
||||
'ruby': DFG_ruby,
|
||||
'go': DFG_go,
|
||||
'php': DFG_php,
|
||||
'javascript': DFG_javascript,
|
||||
'c_sharp': DFG_csharp,
|
||||
}
|
||||
|
||||
|
||||
def calc_dataflow_match(references, candidate, lang):
|
||||
return corpus_dataflow_match([references], [candidate], lang)
|
||||
|
||||
|
||||
def corpus_dataflow_match(references, candidates, lang):
|
||||
LANGUAGE = Language('{}/my-languages.so'.format(parser_path), lang)
|
||||
parser = Parser()
|
||||
parser.set_language(LANGUAGE)
|
||||
parser = [parser, dfg_function[lang]]
|
||||
match_count = 0
|
||||
total_count = 0
|
||||
|
||||
for i in range(len(candidates)):
|
||||
references_sample = references[i]
|
||||
candidate = candidates[i]
|
||||
for reference in references_sample:
|
||||
try:
|
||||
candidate = remove_comments_and_docstrings(candidate, 'java')
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
reference = remove_comments_and_docstrings(reference, 'java')
|
||||
except:
|
||||
pass
|
||||
|
||||
cand_dfg = get_data_flow(candidate, parser)
|
||||
ref_dfg = get_data_flow(reference, parser)
|
||||
|
||||
normalized_cand_dfg = normalize_dataflow(cand_dfg)
|
||||
normalized_ref_dfg = normalize_dataflow(ref_dfg)
|
||||
|
||||
if len(normalized_ref_dfg) > 0:
|
||||
total_count += len(normalized_ref_dfg)
|
||||
for dataflow in normalized_ref_dfg:
|
||||
if dataflow in normalized_cand_dfg:
|
||||
match_count += 1
|
||||
normalized_cand_dfg.remove(dataflow)
|
||||
if total_count == 0:
|
||||
print(
|
||||
"WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to 0. Please consider ignoring this score.")
|
||||
return 0
|
||||
score = match_count / total_count
|
||||
return score
|
||||
|
||||
|
||||
def get_data_flow(code, parser):
|
||||
try:
|
||||
tree = parser[0].parse(bytes(code, 'utf8'))
|
||||
root_node = tree.root_node
|
||||
tokens_index = tree_to_token_index(root_node)
|
||||
code = code.split('\n')
|
||||
code_tokens = [index_to_code_token(x, code) for x in tokens_index]
|
||||
index_to_code = {}
|
||||
for idx, (index, code) in enumerate(zip(tokens_index, code_tokens)):
|
||||
index_to_code[index] = (idx, code)
|
||||
try:
|
||||
DFG, _ = parser[1](root_node, index_to_code, {})
|
||||
except:
|
||||
DFG = []
|
||||
DFG = sorted(DFG, key=lambda x: x[1])
|
||||
indexs = set()
|
||||
for d in DFG:
|
||||
if len(d[-1]) != 0:
|
||||
indexs.add(d[1])
|
||||
for x in d[-1]:
|
||||
indexs.add(x)
|
||||
new_DFG = []
|
||||
for d in DFG:
|
||||
if d[1] in indexs:
|
||||
new_DFG.append(d)
|
||||
codes = code_tokens
|
||||
dfg = new_DFG
|
||||
except:
|
||||
codes = code.split()
|
||||
dfg = []
|
||||
# merge nodes
|
||||
dic = {}
|
||||
for d in dfg:
|
||||
if d[1] not in dic:
|
||||
dic[d[1]] = d
|
||||
else:
|
||||
dic[d[1]] = (d[0], d[1], d[2], list(set(dic[d[1]][3] + d[3])), list(set(dic[d[1]][4] + d[4])))
|
||||
DFG = []
|
||||
for d in dic:
|
||||
DFG.append(dic[d])
|
||||
dfg = DFG
|
||||
return dfg
|
||||
|
||||
|
||||
def normalize_dataflow_item(dataflow_item):
|
||||
var_name = dataflow_item[0]
|
||||
var_pos = dataflow_item[1]
|
||||
relationship = dataflow_item[2]
|
||||
par_vars_name_list = dataflow_item[3]
|
||||
par_vars_pos_list = dataflow_item[4]
|
||||
|
||||
var_names = list(set(par_vars_name_list + [var_name]))
|
||||
norm_names = {}
|
||||
for i in range(len(var_names)):
|
||||
norm_names[var_names[i]] = 'var_' + str(i)
|
||||
|
||||
norm_var_name = norm_names[var_name]
|
||||
relationship = dataflow_item[2]
|
||||
norm_par_vars_name_list = [norm_names[x] for x in par_vars_name_list]
|
||||
|
||||
return (norm_var_name, relationship, norm_par_vars_name_list)
|
||||
|
||||
|
||||
def normalize_dataflow(dataflow):
|
||||
var_dict = {}
|
||||
i = 0
|
||||
normalized_dataflow = []
|
||||
for item in dataflow:
|
||||
var_name = item[0]
|
||||
relationship = item[2]
|
||||
par_vars_name_list = item[3]
|
||||
for name in par_vars_name_list:
|
||||
if name not in var_dict:
|
||||
var_dict[name] = 'var_' + str(i)
|
||||
i += 1
|
||||
if var_name not in var_dict:
|
||||
var_dict[var_name] = 'var_' + str(i)
|
||||
i += 1
|
||||
normalized_dataflow.append((var_dict[var_name], relationship, [var_dict[x] for x in par_vars_name_list]))
|
||||
return normalized_dataflow
|
107
evaluator/CodeBLEU/keywords/c_sharp.txt
Normal file
107
evaluator/CodeBLEU/keywords/c_sharp.txt
Normal file
@ -0,0 +1,107 @@
|
||||
abstract
|
||||
as
|
||||
base
|
||||
bool
|
||||
break
|
||||
byte
|
||||
case
|
||||
catch
|
||||
char
|
||||
checked
|
||||
class
|
||||
const
|
||||
continue
|
||||
decimal
|
||||
default
|
||||
delegate
|
||||
do
|
||||
double
|
||||
else
|
||||
enum
|
||||
event
|
||||
explicit
|
||||
extern
|
||||
false
|
||||
finally
|
||||
fixed
|
||||
float
|
||||
for
|
||||
foreach
|
||||
goto
|
||||
if
|
||||
implicit
|
||||
in
|
||||
int
|
||||
interface
|
||||
internal
|
||||
is
|
||||
lock
|
||||
long
|
||||
namespace
|
||||
new
|
||||
null
|
||||
object
|
||||
operator
|
||||
out
|
||||
override
|
||||
params
|
||||
private
|
||||
protected
|
||||
public
|
||||
readonly
|
||||
ref
|
||||
return
|
||||
sbyte
|
||||
sealed
|
||||
short
|
||||
sizeof
|
||||
stackalloc
|
||||
static
|
||||
string
|
||||
struct
|
||||
switch
|
||||
this
|
||||
throw
|
||||
true
|
||||
try
|
||||
typeof
|
||||
uint
|
||||
ulong
|
||||
unchecked
|
||||
unsafe
|
||||
ushort
|
||||
using
|
||||
virtual
|
||||
void
|
||||
volatile
|
||||
while
|
||||
add
|
||||
alias
|
||||
ascending
|
||||
async
|
||||
await
|
||||
by
|
||||
descending
|
||||
dynamic
|
||||
equals
|
||||
from
|
||||
get
|
||||
global
|
||||
group
|
||||
into
|
||||
join
|
||||
let
|
||||
nameof
|
||||
notnull
|
||||
on
|
||||
orderby
|
||||
partial
|
||||
remove
|
||||
select
|
||||
set
|
||||
unmanaged
|
||||
value
|
||||
var
|
||||
when
|
||||
where
|
||||
yield
|
50
evaluator/CodeBLEU/keywords/java.txt
Normal file
50
evaluator/CodeBLEU/keywords/java.txt
Normal file
@ -0,0 +1,50 @@
|
||||
abstract
|
||||
assert
|
||||
boolean
|
||||
break
|
||||
byte
|
||||
case
|
||||
catch
|
||||
char
|
||||
class
|
||||
const
|
||||
continue
|
||||
default
|
||||
do
|
||||
double
|
||||
else
|
||||
enum
|
||||
extends
|
||||
final
|
||||
finally
|
||||
float
|
||||
for
|
||||
goto
|
||||
if
|
||||
implements
|
||||
import
|
||||
instanceof
|
||||
int
|
||||
interface
|
||||
long
|
||||
native
|
||||
new
|
||||
package
|
||||
private
|
||||
protected
|
||||
public
|
||||
return
|
||||
short
|
||||
static
|
||||
strictfp
|
||||
super
|
||||
switch
|
||||
synchronized
|
||||
this
|
||||
throw
|
||||
throws
|
||||
transient
|
||||
try
|
||||
void
|
||||
volatile
|
||||
while
|
1184
evaluator/CodeBLEU/parser/DFG.py
Normal file
1184
evaluator/CodeBLEU/parser/DFG.py
Normal file
File diff suppressed because it is too large
Load Diff
8
evaluator/CodeBLEU/parser/__init__.py
Normal file
8
evaluator/CodeBLEU/parser/__init__.py
Normal file
@ -0,0 +1,8 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
from .utils import (remove_comments_and_docstrings,
|
||||
tree_to_token_index,
|
||||
index_to_code_token,
|
||||
tree_to_variable_index)
|
||||
from .DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
21
evaluator/CodeBLEU/parser/build.py
Normal file
21
evaluator/CodeBLEU/parser/build.py
Normal file
@ -0,0 +1,21 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
from tree_sitter import Language, Parser
|
||||
|
||||
Language.build_library(
|
||||
# Store the library in the `build` directory
|
||||
'my-languages.so',
|
||||
|
||||
# Include one or more languages
|
||||
[
|
||||
'tree-sitter-go',
|
||||
'tree-sitter-javascript',
|
||||
'tree-sitter-python',
|
||||
'tree-sitter-php',
|
||||
'tree-sitter-java',
|
||||
'tree-sitter-ruby',
|
||||
'tree-sitter-c-sharp',
|
||||
]
|
||||
)
|
||||
|
8
evaluator/CodeBLEU/parser/build.sh
Normal file
8
evaluator/CodeBLEU/parser/build.sh
Normal file
@ -0,0 +1,8 @@
|
||||
git clone https://github.com/tree-sitter/tree-sitter-go
|
||||
git clone https://github.com/tree-sitter/tree-sitter-javascript
|
||||
git clone https://github.com/tree-sitter/tree-sitter-python
|
||||
git clone https://github.com/tree-sitter/tree-sitter-ruby
|
||||
git clone https://github.com/tree-sitter/tree-sitter-php
|
||||
git clone https://github.com/tree-sitter/tree-sitter-java
|
||||
git clone https://github.com/tree-sitter/tree-sitter-c-sharp
|
||||
python build.py
|
BIN
evaluator/CodeBLEU/parser/my-languages.so
Normal file
BIN
evaluator/CodeBLEU/parser/my-languages.so
Normal file
Binary file not shown.
108
evaluator/CodeBLEU/parser/utils.py
Normal file
108
evaluator/CodeBLEU/parser/utils.py
Normal file
@ -0,0 +1,108 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import re
|
||||
from io import StringIO
|
||||
import tokenize
|
||||
|
||||
|
||||
def remove_comments_and_docstrings(source, lang):
|
||||
if lang in ['python']:
|
||||
"""
|
||||
Returns 'source' minus comments and docstrings.
|
||||
"""
|
||||
io_obj = StringIO(source)
|
||||
out = ""
|
||||
prev_toktype = tokenize.INDENT
|
||||
last_lineno = -1
|
||||
last_col = 0
|
||||
for tok in tokenize.generate_tokens(io_obj.readline):
|
||||
token_type = tok[0]
|
||||
token_string = tok[1]
|
||||
start_line, start_col = tok[2]
|
||||
end_line, end_col = tok[3]
|
||||
ltext = tok[4]
|
||||
if start_line > last_lineno:
|
||||
last_col = 0
|
||||
if start_col > last_col:
|
||||
out += (" " * (start_col - last_col))
|
||||
# Remove comments:
|
||||
if token_type == tokenize.COMMENT:
|
||||
pass
|
||||
# This series of conditionals removes docstrings:
|
||||
elif token_type == tokenize.STRING:
|
||||
if prev_toktype != tokenize.INDENT:
|
||||
# This is likely a docstring; double-check we're not inside an operator:
|
||||
if prev_toktype != tokenize.NEWLINE:
|
||||
if start_col > 0:
|
||||
out += token_string
|
||||
else:
|
||||
out += token_string
|
||||
prev_toktype = token_type
|
||||
last_col = end_col
|
||||
last_lineno = end_line
|
||||
temp = []
|
||||
for x in out.split('\n'):
|
||||
if x.strip() != "":
|
||||
temp.append(x)
|
||||
return '\n'.join(temp)
|
||||
elif lang in ['ruby']:
|
||||
return source
|
||||
else:
|
||||
def replacer(match):
|
||||
s = match.group(0)
|
||||
if s.startswith('/'):
|
||||
return " " # note: a space and not an empty string
|
||||
else:
|
||||
return s
|
||||
|
||||
pattern = re.compile(
|
||||
r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
|
||||
re.DOTALL | re.MULTILINE
|
||||
)
|
||||
temp = []
|
||||
for x in re.sub(pattern, replacer, source).split('\n'):
|
||||
if x.strip() != "":
|
||||
temp.append(x)
|
||||
return '\n'.join(temp)
|
||||
|
||||
|
||||
def tree_to_token_index(root_node):
|
||||
if (len(root_node.children) == 0 or root_node.type in ['string_literal', 'string',
|
||||
'character_literal']) and root_node.type != 'comment':
|
||||
return [(root_node.start_point, root_node.end_point)]
|
||||
else:
|
||||
code_tokens = []
|
||||
for child in root_node.children:
|
||||
code_tokens += tree_to_token_index(child)
|
||||
return code_tokens
|
||||
|
||||
|
||||
def tree_to_variable_index(root_node, index_to_code):
|
||||
if (len(root_node.children) == 0 or root_node.type in ['string_literal', 'string',
|
||||
'character_literal']) and root_node.type != 'comment':
|
||||
index = (root_node.start_point, root_node.end_point)
|
||||
_, code = index_to_code[index]
|
||||
if root_node.type != code:
|
||||
return [(root_node.start_point, root_node.end_point)]
|
||||
else:
|
||||
return []
|
||||
else:
|
||||
code_tokens = []
|
||||
for child in root_node.children:
|
||||
code_tokens += tree_to_variable_index(child, index_to_code)
|
||||
return code_tokens
|
||||
|
||||
|
||||
def index_to_code_token(index, code):
|
||||
start_point = index[0]
|
||||
end_point = index[1]
|
||||
if start_point[0] == end_point[0]:
|
||||
s = code[start_point[0]][start_point[1]:end_point[1]]
|
||||
else:
|
||||
s = ""
|
||||
s += code[start_point[0]][start_point[1]:]
|
||||
for i in range(start_point[0] + 1, end_point[0]):
|
||||
s += code[i]
|
||||
s += code[end_point[0]][:end_point[1]]
|
||||
return s
|
1
evaluator/CodeBLEU/readme.txt
Normal file
1
evaluator/CodeBLEU/readme.txt
Normal file
@ -0,0 +1 @@
|
||||
python calc_code_bleu.py --refs reference_files --hyp candidate_file --language java ( or c_sharp) --params 0.25,0.25,0.25,0.25(default)
|
77
evaluator/CodeBLEU/syntax_match.py
Normal file
77
evaluator/CodeBLEU/syntax_match.py
Normal file
@ -0,0 +1,77 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
from evaluator.CodeBLEU.parser import DFG_python, DFG_java, DFG_ruby, DFG_go, DFG_php, DFG_javascript, DFG_csharp
|
||||
from evaluator.CodeBLEU.parser import (remove_comments_and_docstrings,
|
||||
tree_to_token_index,
|
||||
index_to_code_token,
|
||||
tree_to_variable_index)
|
||||
from tree_sitter import Language, Parser
|
||||
|
||||
parser_path = '/export/share/wang.y/workspace/CodeT5Full/finetune/evaluator/CodeBLEU/parser'
|
||||
dfg_function = {
|
||||
'python': DFG_python,
|
||||
'java': DFG_java,
|
||||
'ruby': DFG_ruby,
|
||||
'go': DFG_go,
|
||||
'php': DFG_php,
|
||||
'javascript': DFG_javascript,
|
||||
'c_sharp': DFG_csharp,
|
||||
}
|
||||
|
||||
|
||||
def calc_syntax_match(references, candidate, lang):
|
||||
return corpus_syntax_match([references], [candidate], lang)
|
||||
|
||||
|
||||
def corpus_syntax_match(references, candidates, lang):
|
||||
JAVA_LANGUAGE = Language('{}/my-languages.so'.format(parser_path), lang)
|
||||
parser = Parser()
|
||||
parser.set_language(JAVA_LANGUAGE)
|
||||
match_count = 0
|
||||
total_count = 0
|
||||
|
||||
for i in range(len(candidates)):
|
||||
references_sample = references[i]
|
||||
candidate = candidates[i]
|
||||
for reference in references_sample:
|
||||
try:
|
||||
candidate = remove_comments_and_docstrings(candidate, 'java')
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
reference = remove_comments_and_docstrings(reference, 'java')
|
||||
except:
|
||||
pass
|
||||
|
||||
candidate_tree = parser.parse(bytes(candidate, 'utf8')).root_node
|
||||
|
||||
reference_tree = parser.parse(bytes(reference, 'utf8')).root_node
|
||||
|
||||
def get_all_sub_trees(root_node):
|
||||
node_stack = []
|
||||
sub_tree_sexp_list = []
|
||||
depth = 1
|
||||
node_stack.append([root_node, depth])
|
||||
while len(node_stack) != 0:
|
||||
cur_node, cur_depth = node_stack.pop()
|
||||
sub_tree_sexp_list.append([cur_node.sexp(), cur_depth])
|
||||
for child_node in cur_node.children:
|
||||
if len(child_node.children) != 0:
|
||||
depth = cur_depth + 1
|
||||
node_stack.append([child_node, depth])
|
||||
return sub_tree_sexp_list
|
||||
|
||||
cand_sexps = [x[0] for x in get_all_sub_trees(candidate_tree)]
|
||||
ref_sexps = get_all_sub_trees(reference_tree)
|
||||
|
||||
# print(cand_sexps)
|
||||
# print(ref_sexps)
|
||||
|
||||
for sub_tree, depth in ref_sexps:
|
||||
if sub_tree in cand_sexps:
|
||||
match_count += 1
|
||||
total_count += len(ref_sexps)
|
||||
|
||||
score = match_count / total_count
|
||||
return score
|
106
evaluator/CodeBLEU/utils.py
Normal file
106
evaluator/CodeBLEU/utils.py
Normal file
@ -0,0 +1,106 @@
|
||||
# Natural Language Toolkit: Utility functions
|
||||
#
|
||||
# Copyright (C) 2001-2020 NLTK Project
|
||||
# Author: Steven Bird <stevenbird1@gmail.com>
|
||||
# URL: <http://nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
from itertools import chain
|
||||
|
||||
def pad_sequence(
|
||||
sequence,
|
||||
n,
|
||||
pad_left=False,
|
||||
pad_right=False,
|
||||
left_pad_symbol=None,
|
||||
right_pad_symbol=None,
|
||||
):
|
||||
"""
|
||||
Returns a padded sequence of items before ngram extraction.
|
||||
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
||||
['<s>', 1, 2, 3, 4, 5, '</s>']
|
||||
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
||||
['<s>', 1, 2, 3, 4, 5]
|
||||
>>> list(pad_sequence([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
||||
[1, 2, 3, 4, 5, '</s>']
|
||||
:param sequence: the source data to be padded
|
||||
:type sequence: sequence or iter
|
||||
:param n: the degree of the ngrams
|
||||
:type n: int
|
||||
:param pad_left: whether the ngrams should be left-padded
|
||||
:type pad_left: bool
|
||||
:param pad_right: whether the ngrams should be right-padded
|
||||
:type pad_right: bool
|
||||
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
||||
:type left_pad_symbol: any
|
||||
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
||||
:type right_pad_symbol: any
|
||||
:rtype: sequence or iter
|
||||
"""
|
||||
sequence = iter(sequence)
|
||||
if pad_left:
|
||||
sequence = chain((left_pad_symbol,) * (n - 1), sequence)
|
||||
if pad_right:
|
||||
sequence = chain(sequence, (right_pad_symbol,) * (n - 1))
|
||||
return sequence
|
||||
|
||||
|
||||
# add a flag to pad the sequence so we get peripheral ngrams?
|
||||
|
||||
|
||||
def ngrams(
|
||||
sequence,
|
||||
n,
|
||||
pad_left=False,
|
||||
pad_right=False,
|
||||
left_pad_symbol=None,
|
||||
right_pad_symbol=None,
|
||||
):
|
||||
"""
|
||||
Return the ngrams generated from a sequence of items, as an iterator.
|
||||
For example:
|
||||
>>> from nltk.util import ngrams
|
||||
>>> list(ngrams([1,2,3,4,5], 3))
|
||||
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
|
||||
Wrap with list for a list version of this function. Set pad_left
|
||||
or pad_right to true in order to get additional ngrams:
|
||||
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True))
|
||||
[(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]
|
||||
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
||||
[(1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
||||
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
||||
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5)]
|
||||
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
||||
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
||||
:param sequence: the source data to be converted into ngrams
|
||||
:type sequence: sequence or iter
|
||||
:param n: the degree of the ngrams
|
||||
:type n: int
|
||||
:param pad_left: whether the ngrams should be left-padded
|
||||
:type pad_left: bool
|
||||
:param pad_right: whether the ngrams should be right-padded
|
||||
:type pad_right: bool
|
||||
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
||||
:type left_pad_symbol: any
|
||||
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
||||
:type right_pad_symbol: any
|
||||
:rtype: sequence or iter
|
||||
"""
|
||||
sequence = pad_sequence(
|
||||
sequence, n, pad_left, pad_right, left_pad_symbol, right_pad_symbol
|
||||
)
|
||||
|
||||
history = []
|
||||
while n > 1:
|
||||
# PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator
|
||||
try:
|
||||
next_item = next(sequence)
|
||||
except StopIteration:
|
||||
# no more data, terminate the generator
|
||||
return
|
||||
history.append(next_item)
|
||||
n -= 1
|
||||
for item in sequence:
|
||||
history.append(item)
|
||||
yield tuple(history)
|
||||
del history[0]
|
558
evaluator/CodeBLEU/weighted_ngram_match.py
Normal file
558
evaluator/CodeBLEU/weighted_ngram_match.py
Normal file
@ -0,0 +1,558 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Natural Language Toolkit: BLEU Score
|
||||
#
|
||||
# Copyright (C) 2001-2020 NLTK Project
|
||||
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
||||
# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
|
||||
# URL: <http://nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
"""BLEU score implementation."""
|
||||
|
||||
import math
|
||||
import sys
|
||||
from fractions import Fraction
|
||||
import warnings
|
||||
from collections import Counter
|
||||
|
||||
from evaluator.CodeBLEU.utils import ngrams
|
||||
import pdb
|
||||
|
||||
|
||||
def sentence_bleu(
|
||||
references,
|
||||
hypothesis,
|
||||
weights=(0.25, 0.25, 0.25, 0.25),
|
||||
smoothing_function=None,
|
||||
auto_reweigh=False,
|
||||
):
|
||||
"""
|
||||
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
||||
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
||||
"BLEU: a method for automatic evaluation of machine translation."
|
||||
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
||||
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
||||
... 'that', 'party', 'direct']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
||||
... 'heed', 'Party', 'commands']
|
||||
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the',
|
||||
... 'Party']
|
||||
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
||||
0.5045...
|
||||
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
||||
value 0. This is because the precision for the order of n-grams without
|
||||
overlap is 0, and the geometric mean in the final BLEU score computation
|
||||
multiplies the 0 with the precision of other n-grams. This results in 0
|
||||
(independently of the precision of the othe n-gram orders). The following
|
||||
example has zero 3-gram and 4-gram overlaps:
|
||||
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
||||
0.0
|
||||
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
||||
function can be used.
|
||||
>>> chencherry = SmoothingFunction()
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
||||
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
||||
0.0370...
|
||||
The default BLEU calculates a score for up to 4-grams using uniform
|
||||
weights (this is called BLEU-4). To evaluate your translations with
|
||||
higher/lower order ngrams, use customized weights. E.g. when accounting
|
||||
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
||||
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
||||
0.3920...
|
||||
:param references: reference sentences
|
||||
:type references: list(list(str))
|
||||
:param hypothesis: a hypothesis sentence
|
||||
:type hypothesis: list(str)
|
||||
:param weights: weights for unigrams, bigrams, trigrams and so on
|
||||
:type weights: list(float)
|
||||
:param smoothing_function:
|
||||
:type smoothing_function: SmoothingFunction
|
||||
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
||||
:type auto_reweigh: bool
|
||||
:return: The sentence-level BLEU score.
|
||||
:rtype: float
|
||||
"""
|
||||
return corpus_bleu(
|
||||
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
||||
)
|
||||
|
||||
|
||||
def corpus_bleu(
|
||||
list_of_references,
|
||||
hypotheses,
|
||||
weights=(0.25, 0.25, 0.25, 0.25),
|
||||
smoothing_function=None,
|
||||
auto_reweigh=False,
|
||||
):
|
||||
"""
|
||||
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
||||
the hypotheses and their respective references.
|
||||
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
||||
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
||||
the micro-average precision (i.e. summing the numerators and denominators
|
||||
for each hypothesis-reference(s) pairs before the division).
|
||||
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
||||
... 'heed', 'Party', 'commands']
|
||||
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
||||
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
||||
... 'interested', 'in', 'world', 'history']
|
||||
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
||||
... 'because', 'he', 'read', 'the', 'book']
|
||||
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
||||
>>> hypotheses = [hyp1, hyp2]
|
||||
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
||||
0.5920...
|
||||
The example below show that corpus_bleu() is different from averaging
|
||||
sentence_bleu() for hypotheses
|
||||
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
||||
>>> score2 = sentence_bleu([ref2a], hyp2)
|
||||
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
||||
0.6223...
|
||||
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
||||
:type list_of_references: list(list(list(str)))
|
||||
:param hypotheses: a list of hypothesis sentences
|
||||
:type hypotheses: list(list(str))
|
||||
:param weights: weights for unigrams, bigrams, trigrams and so on
|
||||
:type weights: list(float)
|
||||
:param smoothing_function:
|
||||
:type smoothing_function: SmoothingFunction
|
||||
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
||||
:type auto_reweigh: bool
|
||||
:return: The corpus-level BLEU score.
|
||||
:rtype: float
|
||||
"""
|
||||
# Before proceeding to compute BLEU, perform sanity checks.
|
||||
|
||||
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
||||
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
||||
hyp_lengths, ref_lengths = 0, 0
|
||||
|
||||
assert len(list_of_references) == len(hypotheses), (
|
||||
"The number of hypotheses and their reference(s) should be the " "same "
|
||||
)
|
||||
|
||||
# Iterate through each hypothesis and their corresponding references.
|
||||
for references, hypothesis in zip(list_of_references, hypotheses):
|
||||
# For each order of ngram, calculate the numerator and
|
||||
# denominator for the corpus-level modified precision.
|
||||
for i, _ in enumerate(weights, start=1):
|
||||
p_i_numeraotr, p_i_denominator = modified_recall(references, hypothesis, i)
|
||||
p_numerators[i] += p_i_numeraotr
|
||||
p_denominators[i] += p_i_denominator
|
||||
|
||||
# Calculate the hypothesis length and the closest reference length.
|
||||
# Adds them to the corpus-level hypothesis and reference counts.
|
||||
hyp_len = len(hypothesis)
|
||||
hyp_lengths += hyp_len
|
||||
ref_lengths += closest_ref_length(references, hyp_len)
|
||||
|
||||
# Calculate corpus-level brevity penalty.
|
||||
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
||||
|
||||
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
||||
# order of n-grams < 4 and weights is set at default.
|
||||
if auto_reweigh:
|
||||
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
||||
weights = (1 / hyp_lengths,) * hyp_lengths
|
||||
|
||||
# Collects the various recall values for the different ngram orders.
|
||||
p_n = [
|
||||
(p_numerators[i], p_denominators[i])
|
||||
for i, _ in enumerate(weights, start=1)
|
||||
]
|
||||
|
||||
# Returns 0 if there's no matching n-grams
|
||||
# We only need to check for p_numerators[1] == 0, since if there's
|
||||
# no unigrams, there won't be any higher order ngrams.
|
||||
if p_numerators[1] == 0:
|
||||
return 0
|
||||
|
||||
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
||||
if not smoothing_function:
|
||||
smoothing_function = SmoothingFunction().method1
|
||||
# Smoothen the modified precision.
|
||||
# Note: smoothing_function() may convert values into floats;
|
||||
# it tries to retain the Fraction object as much as the
|
||||
# smoothing method allows.
|
||||
p_n = smoothing_function(
|
||||
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
||||
)
|
||||
# pdb.set_trace()
|
||||
s = (w_i * math.log(p_i[0]/p_i[1]) for w_i, p_i in zip(weights, p_n))
|
||||
s = bp * math.exp(math.fsum(s))
|
||||
return s
|
||||
|
||||
|
||||
def modified_recall(references, hypothesis, n):
|
||||
"""
|
||||
Calculate modified ngram recall.
|
||||
:param references: A list of reference translations.
|
||||
:type references: list(list(str))
|
||||
:param hypothesis: A hypothesis translation.
|
||||
:type hypothesis: list(str)
|
||||
:param n: The ngram order.
|
||||
:type n: int
|
||||
:return: BLEU's modified precision for the nth order ngram.
|
||||
:rtype: Fraction
|
||||
"""
|
||||
# Extracts all ngrams in hypothesis
|
||||
# Set an empty Counter if hypothesis is empty.
|
||||
# pdb.set_trace()
|
||||
numerator = 0
|
||||
denominator = 0
|
||||
|
||||
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
||||
# Extract a union of references' counts.
|
||||
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
||||
max_counts = {}
|
||||
for reference_and_weights in references:
|
||||
reference = reference_and_weights[0]
|
||||
weights = reference_and_weights[1]
|
||||
reference_counts = (
|
||||
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
||||
)
|
||||
# for ngram in reference_counts:
|
||||
# max_counts[ngram] = max(max_counts.get(ngram, 0), counts[ngram])
|
||||
clipped_counts = {
|
||||
ngram: min(count, counts[ngram]) for ngram, count in reference_counts.items()
|
||||
}
|
||||
# reweight
|
||||
if n == 1 and len(weights) == len(reference_counts):
|
||||
def weighted_sum(weights, counts):
|
||||
sum_counts = 0
|
||||
for ngram, count in counts.items():
|
||||
sum_counts += count * (weights[ngram[0]] if ngram[0] in weights else 1)
|
||||
return sum_counts
|
||||
|
||||
numerator += weighted_sum(weights, clipped_counts)
|
||||
denominator += max(1, weighted_sum(weights, reference_counts))
|
||||
|
||||
else:
|
||||
numerator += sum(clipped_counts.values())
|
||||
denominator += max(1, sum(reference_counts.values()))
|
||||
|
||||
# # Assigns the intersection between hypothesis and references' counts.
|
||||
# clipped_counts = {
|
||||
# ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
||||
# }
|
||||
|
||||
# numerator += sum(clipped_counts.values())
|
||||
# # Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
||||
# # Usually this happens when the ngram order is > len(reference).
|
||||
# denominator += max(1, sum(counts.values()))
|
||||
|
||||
#return Fraction(numerator, denominator, _normalize=False)
|
||||
return numerator, denominator
|
||||
|
||||
|
||||
def closest_ref_length(references, hyp_len):
|
||||
"""
|
||||
This function finds the reference that is the closest length to the
|
||||
hypothesis. The closest reference length is referred to as *r* variable
|
||||
from the brevity penalty formula in Papineni et. al. (2002)
|
||||
:param references: A list of reference translations.
|
||||
:type references: list(list(str))
|
||||
:param hyp_len: The length of the hypothesis.
|
||||
:type hyp_len: int
|
||||
:return: The length of the reference that's closest to the hypothesis.
|
||||
:rtype: int
|
||||
"""
|
||||
ref_lens = (len(reference) for reference in references)
|
||||
closest_ref_len = min(
|
||||
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
||||
)
|
||||
return closest_ref_len
|
||||
|
||||
|
||||
def brevity_penalty(closest_ref_len, hyp_len):
|
||||
"""
|
||||
Calculate brevity penalty.
|
||||
As the modified n-gram precision still has the problem from the short
|
||||
length sentence, brevity penalty is used to modify the overall BLEU
|
||||
score according to length.
|
||||
An example from the paper. There are three references with length 12, 15
|
||||
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
||||
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
||||
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
||||
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
||||
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
||||
>>> references = [reference1, reference2, reference3]
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
1.0
|
||||
In case a hypothesis translation is shorter than the references, penalty is
|
||||
applied.
|
||||
>>> references = [['a'] * 28, ['a'] * 28]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
0.2635971381157267
|
||||
The length of the closest reference is used to compute the penalty. If the
|
||||
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
||||
penalty is applied because the hypothesis length (12) is less then the
|
||||
closest reference length (13).
|
||||
>>> references = [['a'] * 13, ['a'] * 2]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
||||
0.9200...
|
||||
The brevity penalty doesn't depend on reference order. More importantly,
|
||||
when two reference sentences are at the same distance, the shortest
|
||||
reference sentence length is used.
|
||||
>>> references = [['a'] * 13, ['a'] * 11]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
||||
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
||||
>>> bp1 == bp2 == 1
|
||||
True
|
||||
A test example from mteval-v13a.pl (starting from the line 705):
|
||||
>>> references = [['a'] * 11, ['a'] * 8]
|
||||
>>> hypothesis = ['a'] * 7
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
||||
0.8668...
|
||||
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
||||
>>> hypothesis = ['a'] * 7
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
1.0
|
||||
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
||||
sum of all the hypotheses' lengths for a corpus
|
||||
:type hyp_len: int
|
||||
:param closest_ref_len: The length of the closest reference for a single
|
||||
hypothesis OR the sum of all the closest references for every hypotheses.
|
||||
:type closest_ref_len: int
|
||||
:return: BLEU's brevity penalty.
|
||||
:rtype: float
|
||||
"""
|
||||
if hyp_len > closest_ref_len:
|
||||
return 1
|
||||
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
||||
elif hyp_len == 0:
|
||||
return 0
|
||||
else:
|
||||
return math.exp(1 - closest_ref_len / hyp_len)
|
||||
|
||||
|
||||
class SmoothingFunction:
|
||||
"""
|
||||
This is an implementation of the smoothing techniques
|
||||
for segment-level BLEU scores that was presented in
|
||||
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
||||
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
||||
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
||||
"""
|
||||
This will initialize the parameters required for the various smoothing
|
||||
techniques, the default values are set to the numbers used in the
|
||||
experiments from Chen and Cherry (2014).
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
||||
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
||||
... 'commands', 'of', 'the', 'party']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
||||
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
||||
... 'Party', 'commands']
|
||||
>>> chencherry = SmoothingFunction()
|
||||
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
||||
0.4489...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
||||
0.4905...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
||||
0.4135...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
||||
0.4905...
|
||||
:param epsilon: the epsilon value use in method 1
|
||||
:type epsilon: float
|
||||
:param alpha: the alpha value use in method 6
|
||||
:type alpha: int
|
||||
:param k: the k value use in method 4
|
||||
:type k: int
|
||||
"""
|
||||
self.epsilon = epsilon
|
||||
self.alpha = alpha
|
||||
self.k = k
|
||||
|
||||
def method0(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
No smoothing.
|
||||
"""
|
||||
p_n_new = []
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i[0] != 0:
|
||||
p_n_new.append(p_i)
|
||||
else:
|
||||
_msg = str(
|
||||
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
||||
"Therefore the BLEU score evaluates to 0, independently of\n"
|
||||
"how many N-gram overlaps of lower order it contains.\n"
|
||||
"Consider using lower n-gram order or use "
|
||||
"SmoothingFunction()"
|
||||
).format(i + 1)
|
||||
warnings.warn(_msg)
|
||||
# When numerator==0 where denonminator==0 or !=0, the result
|
||||
# for the precision score should be equal to 0 or undefined.
|
||||
# Due to BLEU geometric mean computation in logarithm space,
|
||||
# we we need to take the return sys.float_info.min such that
|
||||
# math.log(sys.float_info.min) returns a 0 precision score.
|
||||
p_n_new.append(sys.float_info.min)
|
||||
return p_n_new
|
||||
|
||||
def method1(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
||||
"""
|
||||
return [
|
||||
((p_i[0] + self.epsilon), p_i[1])
|
||||
if p_i[0] == 0
|
||||
else p_i
|
||||
for p_i in p_n
|
||||
]
|
||||
|
||||
def method2(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 2: Add 1 to both numerator and denominator from
|
||||
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
||||
machine translation quality using longest common subsequence and
|
||||
skip-bigram statistics. In ACL04.
|
||||
"""
|
||||
return [
|
||||
(p_i[0] + 1, p_i[1] + 1)
|
||||
for p_i in p_n
|
||||
]
|
||||
|
||||
def method3(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 3: NIST geometric sequence smoothing
|
||||
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
||||
precision score whose matching n-gram count is null.
|
||||
k is 1 for the first 'n' value for which the n-gram match count is null/
|
||||
For example, if the text contains:
|
||||
- one 2-gram match
|
||||
- and (consequently) two 1-gram matches
|
||||
the n-gram count for each individual precision score would be:
|
||||
- n=1 => prec_count = 2 (two unigrams)
|
||||
- n=2 => prec_count = 1 (one bigram)
|
||||
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
||||
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
||||
"""
|
||||
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator == 0:
|
||||
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
||||
incvnt += 1
|
||||
return p_n
|
||||
|
||||
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 4:
|
||||
Shorter translations may have inflated precision values due to having
|
||||
smaller denominators; therefore, we give them proportionally
|
||||
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
||||
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator == 0 and hyp_len != 0:
|
||||
incvnt = i + 1 * self.k / math.log(
|
||||
hyp_len
|
||||
) # Note that this K is different from the K from NIST.
|
||||
p_n[i] = incvnt / p_i.denominator
|
||||
return p_n
|
||||
|
||||
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 5:
|
||||
The matched counts for similar values of n should be similar. To a
|
||||
calculate the n-gram matched count, it averages the n−1, n and n+1 gram
|
||||
matched counts.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
m = {}
|
||||
# Requires an precision value for an addition ngram order.
|
||||
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
||||
m[-1] = p_n[0] + 1
|
||||
for i, p_i in enumerate(p_n):
|
||||
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
||||
m[i] = p_n[i]
|
||||
return p_n
|
||||
|
||||
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 6:
|
||||
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
||||
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
||||
between pn and pn−1 will be the same as that between pn−1 and pn−2; from
|
||||
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
||||
Gradient Ascent. In NAACL.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
# This smoothing only works when p_1 and p_2 is non-zero.
|
||||
# Raise an error with an appropriate message when the input is too short
|
||||
# to use this smoothing technique.
|
||||
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
||||
for i, p_i in enumerate(p_n):
|
||||
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
||||
continue
|
||||
else:
|
||||
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
||||
# No. of ngrams in translation that matches the reference.
|
||||
m = p_i.numerator
|
||||
# No. of ngrams in translation.
|
||||
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
||||
# Calculates the interpolated precision.
|
||||
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
||||
return p_n
|
||||
|
||||
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 7:
|
||||
Interpolates methods 4 and 5.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
||||
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
||||
return p_n
|
134
evaluator/bleu.py
Normal file
134
evaluator/bleu.py
Normal file
@ -0,0 +1,134 @@
|
||||
# Copyright 2017 Google Inc. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
"""Python implementation of BLEU and smooth-BLEU.
|
||||
|
||||
This module provides a Python implementation of BLEU and smooth-BLEU.
|
||||
Smooth BLEU is computed following the method outlined in the paper:
|
||||
Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic
|
||||
evaluation metrics for machine translation. COLING 2004.
|
||||
"""
|
||||
|
||||
import collections
|
||||
import math
|
||||
|
||||
|
||||
def _get_ngrams(segment, max_order):
|
||||
"""Extracts all n-grams upto a given maximum order from an input segment.
|
||||
|
||||
Args:
|
||||
segment: text segment from which n-grams will be extracted.
|
||||
max_order: maximum length in tokens of the n-grams returned by this
|
||||
methods.
|
||||
|
||||
Returns:
|
||||
The Counter containing all n-grams upto max_order in segment
|
||||
with a count of how many times each n-gram occurred.
|
||||
"""
|
||||
ngram_counts = collections.Counter()
|
||||
for order in range(1, max_order + 1):
|
||||
for i in range(0, len(segment) - order + 1):
|
||||
ngram = tuple(segment[i:i+order])
|
||||
ngram_counts[ngram] += 1
|
||||
return ngram_counts
|
||||
|
||||
|
||||
def compute_bleu(reference_corpus, translation_corpus, max_order=4,
|
||||
smooth=False):
|
||||
"""Computes BLEU score of translated segments against one or more references.
|
||||
|
||||
Args:
|
||||
reference_corpus: list of lists of references for each translation. Each
|
||||
reference should be tokenized into a list of tokens.
|
||||
translation_corpus: list of translations to score. Each translation
|
||||
should be tokenized into a list of tokens.
|
||||
max_order: Maximum n-gram order to use when computing BLEU score.
|
||||
smooth: Whether or not to apply Lin et al. 2004 smoothing.
|
||||
|
||||
Returns:
|
||||
3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram
|
||||
precisions and brevity penalty.
|
||||
"""
|
||||
matches_by_order = [0] * max_order
|
||||
possible_matches_by_order = [0] * max_order
|
||||
reference_length = 0
|
||||
translation_length = 0
|
||||
for (references, translation) in zip(reference_corpus,
|
||||
translation_corpus):
|
||||
reference_length += min(len(r) for r in references)
|
||||
translation_length += len(translation)
|
||||
|
||||
merged_ref_ngram_counts = collections.Counter()
|
||||
for reference in references:
|
||||
merged_ref_ngram_counts |= _get_ngrams(reference, max_order)
|
||||
translation_ngram_counts = _get_ngrams(translation, max_order)
|
||||
overlap = translation_ngram_counts & merged_ref_ngram_counts
|
||||
for ngram in overlap:
|
||||
matches_by_order[len(ngram)-1] += overlap[ngram]
|
||||
for order in range(1, max_order+1):
|
||||
possible_matches = len(translation) - order + 1
|
||||
if possible_matches > 0:
|
||||
possible_matches_by_order[order-1] += possible_matches
|
||||
|
||||
precisions = [0] * max_order
|
||||
for i in range(0, max_order):
|
||||
if smooth:
|
||||
precisions[i] = ((matches_by_order[i] + 1.) /
|
||||
(possible_matches_by_order[i] + 1.))
|
||||
else:
|
||||
if possible_matches_by_order[i] > 0:
|
||||
precisions[i] = (float(matches_by_order[i]) /
|
||||
possible_matches_by_order[i])
|
||||
else:
|
||||
precisions[i] = 0.0
|
||||
|
||||
if min(precisions) > 0:
|
||||
p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions)
|
||||
geo_mean = math.exp(p_log_sum)
|
||||
else:
|
||||
geo_mean = 0
|
||||
|
||||
ratio = float(translation_length) / reference_length
|
||||
|
||||
if ratio > 1.0:
|
||||
bp = 1.
|
||||
else:
|
||||
bp = math.exp(1 - 1. / ratio)
|
||||
|
||||
bleu = geo_mean * bp
|
||||
|
||||
return (bleu, precisions, bp, ratio, translation_length, reference_length)
|
||||
|
||||
|
||||
def _bleu(ref_file, trans_file, subword_option=None):
|
||||
max_order = 4
|
||||
smooth = True
|
||||
ref_files = [ref_file]
|
||||
reference_text = []
|
||||
for reference_filename in ref_files:
|
||||
with open(reference_filename) as fh:
|
||||
reference_text.append(fh.readlines())
|
||||
per_segment_references = []
|
||||
for references in zip(*reference_text):
|
||||
reference_list = []
|
||||
for reference in references:
|
||||
reference_list.append(reference.strip().split())
|
||||
per_segment_references.append(reference_list)
|
||||
translations = []
|
||||
with open(trans_file) as fh:
|
||||
for line in fh:
|
||||
translations.append(line.strip().split())
|
||||
bleu_score, _, _, _, _, _ = compute_bleu(per_segment_references, translations, max_order, smooth)
|
||||
return round(100 * bleu_score,2)
|
208
evaluator/smooth_bleu.py
Normal file
208
evaluator/smooth_bleu.py
Normal file
@ -0,0 +1,208 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
'''
|
||||
This script was adapted from the original version by hieuhoang1972 which is part of MOSES.
|
||||
'''
|
||||
|
||||
# $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $
|
||||
|
||||
'''Provides:
|
||||
|
||||
cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test().
|
||||
cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked().
|
||||
score_cooked(alltest, n=4): Score a list of cooked test sentences.
|
||||
|
||||
score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids.
|
||||
|
||||
The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible.
|
||||
'''
|
||||
|
||||
import sys, math, re, xml.sax.saxutils
|
||||
import subprocess
|
||||
import os
|
||||
|
||||
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
||||
nonorm = 0
|
||||
|
||||
preserve_case = False
|
||||
eff_ref_len = "shortest"
|
||||
|
||||
normalize1 = [
|
||||
('<skipped>', ''), # strip "skipped" tags
|
||||
(r'-\n', ''), # strip end-of-line hyphenation and join lines
|
||||
(r'\n', ' '), # join lines
|
||||
# (r'(\d)\s+(?=\d)', r'\1'), # join digits
|
||||
]
|
||||
normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1]
|
||||
|
||||
normalize2 = [
|
||||
(r'([\{-\~\[-\` -\&\(-\+\:-\@\/])', r' \1 '), # tokenize punctuation. apostrophe is missing
|
||||
(r'([^0-9])([\.,])', r'\1 \2 '), # tokenize period and comma unless preceded by a digit
|
||||
(r'([\.,])([^0-9])', r' \1 \2'), # tokenize period and comma unless followed by a digit
|
||||
(r'([0-9])(-)', r'\1 \2 ') # tokenize dash when preceded by a digit
|
||||
]
|
||||
normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2]
|
||||
|
||||
|
||||
def normalize(s):
|
||||
'''Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl.'''
|
||||
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
||||
if (nonorm):
|
||||
return s.split()
|
||||
if type(s) is not str:
|
||||
s = " ".join(s)
|
||||
# language-independent part:
|
||||
for (pattern, replace) in normalize1:
|
||||
s = re.sub(pattern, replace, s)
|
||||
s = xml.sax.saxutils.unescape(s, {'"': '"'})
|
||||
# language-dependent part (assuming Western languages):
|
||||
s = " %s " % s
|
||||
if not preserve_case:
|
||||
s = s.lower() # this might not be identical to the original
|
||||
for (pattern, replace) in normalize2:
|
||||
s = re.sub(pattern, replace, s)
|
||||
return s.split()
|
||||
|
||||
|
||||
def count_ngrams(words, n=4):
|
||||
counts = {}
|
||||
for k in range(1, n + 1):
|
||||
for i in range(len(words) - k + 1):
|
||||
ngram = tuple(words[i:i + k])
|
||||
counts[ngram] = counts.get(ngram, 0) + 1
|
||||
return counts
|
||||
|
||||
|
||||
def cook_refs(refs, n=4):
|
||||
'''Takes a list of reference sentences for a single segment
|
||||
and returns an object that encapsulates everything that BLEU
|
||||
needs to know about them.'''
|
||||
|
||||
refs = [normalize(ref) for ref in refs]
|
||||
maxcounts = {}
|
||||
for ref in refs:
|
||||
counts = count_ngrams(ref, n)
|
||||
for (ngram, count) in counts.items():
|
||||
maxcounts[ngram] = max(maxcounts.get(ngram, 0), count)
|
||||
return ([len(ref) for ref in refs], maxcounts)
|
||||
|
||||
|
||||
def cook_test(test, item, n=4):
|
||||
'''Takes a test sentence and returns an object that
|
||||
encapsulates everything that BLEU needs to know about it.'''
|
||||
(reflens, refmaxcounts) = item
|
||||
test = normalize(test)
|
||||
result = {}
|
||||
result["testlen"] = len(test)
|
||||
|
||||
# Calculate effective reference sentence length.
|
||||
|
||||
if eff_ref_len == "shortest":
|
||||
result["reflen"] = min(reflens)
|
||||
elif eff_ref_len == "average":
|
||||
result["reflen"] = float(sum(reflens)) / len(reflens)
|
||||
elif eff_ref_len == "closest":
|
||||
min_diff = None
|
||||
for reflen in reflens:
|
||||
if min_diff is None or abs(reflen - len(test)) < min_diff:
|
||||
min_diff = abs(reflen - len(test))
|
||||
result['reflen'] = reflen
|
||||
|
||||
result["guess"] = [max(len(test) - k + 1, 0) for k in range(1, n + 1)]
|
||||
|
||||
result['correct'] = [0] * n
|
||||
counts = count_ngrams(test, n)
|
||||
for (ngram, count) in counts.items():
|
||||
result["correct"][len(ngram) - 1] += min(refmaxcounts.get(ngram, 0), count)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def score_cooked(allcomps, n=4, ground=0, smooth=1):
|
||||
totalcomps = {'testlen': 0, 'reflen': 0, 'guess': [0] * n, 'correct': [0] * n}
|
||||
for comps in allcomps:
|
||||
for key in ['testlen', 'reflen']:
|
||||
totalcomps[key] += comps[key]
|
||||
for key in ['guess', 'correct']:
|
||||
for k in range(n):
|
||||
totalcomps[key][k] += comps[key][k]
|
||||
logbleu = 0.0
|
||||
all_bleus = []
|
||||
for k in range(n):
|
||||
correct = totalcomps['correct'][k]
|
||||
guess = totalcomps['guess'][k]
|
||||
addsmooth = 0
|
||||
if smooth == 1 and k > 0:
|
||||
addsmooth = 1
|
||||
logbleu += math.log(correct + addsmooth + sys.float_info.min) - math.log(guess + addsmooth + sys.float_info.min)
|
||||
if guess == 0:
|
||||
all_bleus.append(-10000000)
|
||||
else:
|
||||
all_bleus.append(math.log(correct + sys.float_info.min) - math.log(guess))
|
||||
|
||||
logbleu /= float(n)
|
||||
all_bleus.insert(0, logbleu)
|
||||
|
||||
brevPenalty = min(0, 1 - float(totalcomps['reflen'] + 1) / (totalcomps['testlen'] + 1))
|
||||
for i in range(len(all_bleus)):
|
||||
if i == 0:
|
||||
all_bleus[i] += brevPenalty
|
||||
all_bleus[i] = math.exp(all_bleus[i])
|
||||
return all_bleus
|
||||
|
||||
|
||||
def bleu(refs, candidate, ground=0, smooth=1):
|
||||
refs = cook_refs(refs)
|
||||
test = cook_test(candidate, refs)
|
||||
return score_cooked([test], ground=ground, smooth=smooth)
|
||||
|
||||
|
||||
def splitPuncts(line):
|
||||
return ' '.join(re.findall(r"[\w]+|[^\s\w]", line))
|
||||
|
||||
|
||||
def computeMaps(predictions, goldfile):
|
||||
predictionMap = {}
|
||||
goldMap = {}
|
||||
gf = open(goldfile, 'r')
|
||||
|
||||
for row in predictions:
|
||||
cols = row.strip().split('\t')
|
||||
if len(cols) == 1:
|
||||
(rid, pred) = (cols[0], '')
|
||||
else:
|
||||
(rid, pred) = (cols[0], cols[1])
|
||||
predictionMap[rid] = [splitPuncts(pred.strip().lower())]
|
||||
|
||||
for row in gf:
|
||||
(rid, pred) = row.split('\t')
|
||||
if rid in predictionMap: # Only insert if the id exists for the method
|
||||
if rid not in goldMap:
|
||||
goldMap[rid] = []
|
||||
goldMap[rid].append(splitPuncts(pred.strip().lower()))
|
||||
|
||||
sys.stderr.write('Total: ' + str(len(goldMap)) + '\n')
|
||||
return (goldMap, predictionMap)
|
||||
|
||||
|
||||
# m1 is the reference map
|
||||
# m2 is the prediction map
|
||||
def bleuFromMaps(m1, m2):
|
||||
score = [0] * 5
|
||||
num = 0.0
|
||||
|
||||
for key in m1:
|
||||
if key in m2:
|
||||
bl = bleu(m1[key], m2[key][0])
|
||||
score = [score[i] + bl[i] for i in range(0, len(bl))]
|
||||
num += 1
|
||||
return [s * 100.0 / num for s in score]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
reference_file = sys.argv[1]
|
||||
predictions = []
|
||||
for row in sys.stdin:
|
||||
predictions.append(row)
|
||||
(goldMap, predictionMap) = computeMaps(predictions, reference_file)
|
||||
print(bleuFromMaps(goldMap, predictionMap)[0])
|
17
tokenizer/apply_tokenizer.py
Normal file
17
tokenizer/apply_tokenizer.py
Normal file
@ -0,0 +1,17 @@
|
||||
from tokenizers import ByteLevelBPETokenizer
|
||||
|
||||
tokenizer = ByteLevelBPETokenizer.from_file(
|
||||
"./salesforce/codet5-vocab.json",
|
||||
"./salesforce/codet5-merges.txt"
|
||||
)
|
||||
tokenizer.add_special_tokens([
|
||||
"<pad>",
|
||||
"<s>",
|
||||
"</s>",
|
||||
"<unk>",
|
||||
"<mask>"
|
||||
])
|
||||
|
||||
print(
|
||||
tokenizer.encode("<s> hello <unk> Don't you love 🤗 Transformers <mask> yes . </s>").tokens
|
||||
)
|
31740
tokenizer/salesforce/codet5-merges.txt
Normal file
31740
tokenizer/salesforce/codet5-merges.txt
Normal file
File diff suppressed because it is too large
Load Diff
1
tokenizer/salesforce/codet5-vocab.json
Normal file
1
tokenizer/salesforce/codet5-vocab.json
Normal file
File diff suppressed because one or more lines are too long
22
tokenizer/train_tokenizer.py
Normal file
22
tokenizer/train_tokenizer.py
Normal file
@ -0,0 +1,22 @@
|
||||
from tokenizers import ByteLevelBPETokenizer
|
||||
|
||||
paths = ['train_code.txt', 'train_doc.txt']
|
||||
|
||||
# Initialize a tokenizer
|
||||
tokenizer = ByteLevelBPETokenizer()
|
||||
|
||||
# Customize training
|
||||
tokenizer.train(files=paths, vocab_size=32000, min_frequency=3, special_tokens=[
|
||||
"<pad>",
|
||||
"<s>",
|
||||
"</s>",
|
||||
"<unk>",
|
||||
"<mask>"
|
||||
])
|
||||
|
||||
# Save files to disk
|
||||
tokenizer.save_model("./salesforce", "codet5")
|
||||
|
||||
print(
|
||||
tokenizer.encode("<s> hello <unk> Don't you love 🤗 Transformers <mask> yes . </s>").tokens
|
||||
)
|
Loading…
Reference in New Issue
Block a user