mirror of
https://github.com/salesforce/CodeT5.git
synced 2024-10-01 06:35:38 -04:00
remove duplicates
This commit is contained in:
parent
208acbd759
commit
09d823c8dc
590
CodeBLEU/bleu.py
590
CodeBLEU/bleu.py
@ -1,590 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Natural Language Toolkit: BLEU Score
|
||||
#
|
||||
# Copyright (C) 2001-2020 NLTK Project
|
||||
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
||||
# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
|
||||
# URL: <http://nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
"""BLEU score implementation."""
|
||||
|
||||
import math
|
||||
import sys
|
||||
from fractions import Fraction
|
||||
import warnings
|
||||
from collections import Counter
|
||||
|
||||
from evaluator.CodeBLEU.utils import ngrams
|
||||
import pdb
|
||||
|
||||
|
||||
def sentence_bleu(
|
||||
references,
|
||||
hypothesis,
|
||||
weights=(0.25, 0.25, 0.25, 0.25),
|
||||
smoothing_function=None,
|
||||
auto_reweigh=False,
|
||||
):
|
||||
"""
|
||||
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
||||
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
||||
"BLEU: a method for automatic evaluation of machine translation."
|
||||
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
||||
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
||||
... 'that', 'party', 'direct']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
||||
... 'heed', 'Party', 'commands']
|
||||
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the',
|
||||
... 'Party']
|
||||
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
||||
0.5045...
|
||||
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
||||
value 0. This is because the precision for the order of n-grams without
|
||||
overlap is 0, and the geometric mean in the final BLEU score computation
|
||||
multiplies the 0 with the precision of other n-grams. This results in 0
|
||||
(independently of the precision of the othe n-gram orders). The following
|
||||
example has zero 3-gram and 4-gram overlaps:
|
||||
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
||||
0.0
|
||||
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
||||
function can be used.
|
||||
>>> chencherry = SmoothingFunction()
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
||||
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
||||
0.0370...
|
||||
The default BLEU calculates a score for up to 4-grams using uniform
|
||||
weights (this is called BLEU-4). To evaluate your translations with
|
||||
higher/lower order ngrams, use customized weights. E.g. when accounting
|
||||
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
||||
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
||||
0.3920...
|
||||
:param references: reference sentences
|
||||
:type references: list(list(str))
|
||||
:param hypothesis: a hypothesis sentence
|
||||
:type hypothesis: list(str)
|
||||
:param weights: weights for unigrams, bigrams, trigrams and so on
|
||||
:type weights: list(float)
|
||||
:param smoothing_function:
|
||||
:type smoothing_function: SmoothingFunction
|
||||
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
||||
:type auto_reweigh: bool
|
||||
:return: The sentence-level BLEU score.
|
||||
:rtype: float
|
||||
"""
|
||||
return corpus_bleu(
|
||||
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
||||
)
|
||||
|
||||
|
||||
def corpus_bleu(
|
||||
list_of_references,
|
||||
hypotheses,
|
||||
weights=(0.25, 0.25, 0.25, 0.25),
|
||||
smoothing_function=None,
|
||||
auto_reweigh=False,
|
||||
):
|
||||
"""
|
||||
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
||||
the hypotheses and their respective references.
|
||||
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
||||
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
||||
the micro-average precision (i.e. summing the numerators and denominators
|
||||
for each hypothesis-reference(s) pairs before the division).
|
||||
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
||||
... 'heed', 'Party', 'commands']
|
||||
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
||||
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
||||
... 'interested', 'in', 'world', 'history']
|
||||
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
||||
... 'because', 'he', 'read', 'the', 'book']
|
||||
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
||||
>>> hypotheses = [hyp1, hyp2]
|
||||
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
||||
0.5920...
|
||||
The example below show that corpus_bleu() is different from averaging
|
||||
sentence_bleu() for hypotheses
|
||||
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
||||
>>> score2 = sentence_bleu([ref2a], hyp2)
|
||||
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
||||
0.6223...
|
||||
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
||||
:type list_of_references: list(list(list(str)))
|
||||
:param hypotheses: a list of hypothesis sentences
|
||||
:type hypotheses: list(list(str))
|
||||
:param weights: weights for unigrams, bigrams, trigrams and so on
|
||||
:type weights: list(float)
|
||||
:param smoothing_function:
|
||||
:type smoothing_function: SmoothingFunction
|
||||
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
||||
:type auto_reweigh: bool
|
||||
:return: The corpus-level BLEU score.
|
||||
:rtype: float
|
||||
"""
|
||||
# Before proceeding to compute BLEU, perform sanity checks.
|
||||
|
||||
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
||||
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
||||
hyp_lengths, ref_lengths = 0, 0
|
||||
|
||||
assert len(list_of_references) == len(hypotheses), (
|
||||
"The number of hypotheses and their reference(s) should be the " "same "
|
||||
)
|
||||
|
||||
# Iterate through each hypothesis and their corresponding references.
|
||||
for references, hypothesis in zip(list_of_references, hypotheses):
|
||||
# For each order of ngram, calculate the numerator and
|
||||
# denominator for the corpus-level modified precision.
|
||||
for i, _ in enumerate(weights, start=1):
|
||||
p_i = modified_precision(references, hypothesis, i)
|
||||
p_numerators[i] += p_i.numerator
|
||||
p_denominators[i] += p_i.denominator
|
||||
|
||||
# Calculate the hypothesis length and the closest reference length.
|
||||
# Adds them to the corpus-level hypothesis and reference counts.
|
||||
hyp_len = len(hypothesis)
|
||||
hyp_lengths += hyp_len
|
||||
ref_lengths += closest_ref_length(references, hyp_len)
|
||||
|
||||
# Calculate corpus-level brevity penalty.
|
||||
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
||||
|
||||
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
||||
# order of n-grams < 4 and weights is set at default.
|
||||
if auto_reweigh:
|
||||
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
||||
weights = (1 / hyp_lengths,) * hyp_lengths
|
||||
|
||||
# Collects the various precision values for the different ngram orders.
|
||||
p_n = [
|
||||
Fraction(p_numerators[i], p_denominators[i], _normalize=False)
|
||||
for i, _ in enumerate(weights, start=1)
|
||||
]
|
||||
|
||||
# Returns 0 if there's no matching n-grams
|
||||
# We only need to check for p_numerators[1] == 0, since if there's
|
||||
# no unigrams, there won't be any higher order ngrams.
|
||||
if p_numerators[1] == 0:
|
||||
return 0
|
||||
|
||||
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
||||
if not smoothing_function:
|
||||
smoothing_function = SmoothingFunction().method1
|
||||
# Smoothen the modified precision.
|
||||
# Note: smoothing_function() may convert values into floats;
|
||||
# it tries to retain the Fraction object as much as the
|
||||
# smoothing method allows.
|
||||
p_n = smoothing_function(
|
||||
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
||||
)
|
||||
s = (w_i * math.log(p_i) for w_i, p_i in zip(weights, p_n))
|
||||
s = bp * math.exp(math.fsum(s))
|
||||
return s
|
||||
|
||||
|
||||
def modified_precision(references, hypothesis, n):
|
||||
"""
|
||||
Calculate modified ngram precision.
|
||||
The normal precision method may lead to some wrong translations with
|
||||
high-precision, e.g., the translation, in which a word of reference
|
||||
repeats several times, has very high precision.
|
||||
This function only returns the Fraction object that contains the numerator
|
||||
and denominator necessary to calculate the corpus-level precision.
|
||||
To calculate the modified precision for a single pair of hypothesis and
|
||||
references, cast the Fraction object into a float.
|
||||
The famous "the the the ... " example shows that you can get BLEU precision
|
||||
by duplicating high frequency words.
|
||||
>>> reference1 = 'the cat is on the mat'.split()
|
||||
>>> reference2 = 'there is a cat on the mat'.split()
|
||||
>>> hypothesis1 = 'the the the the the the the'.split()
|
||||
>>> references = [reference1, reference2]
|
||||
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
||||
0.2857...
|
||||
In the modified n-gram precision, a reference word will be considered
|
||||
exhausted after a matching hypothesis word is identified, e.g.
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will',
|
||||
... 'forever', 'heed', 'Party', 'commands']
|
||||
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the',
|
||||
... 'Party']
|
||||
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> hypothesis = 'of the'.split()
|
||||
>>> references = [reference1, reference2, reference3]
|
||||
>>> float(modified_precision(references, hypothesis, n=1))
|
||||
1.0
|
||||
>>> float(modified_precision(references, hypothesis, n=2))
|
||||
1.0
|
||||
An example of a normal machine translation hypothesis:
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
||||
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
||||
... 'that', 'party', 'direct']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will',
|
||||
... 'forever', 'heed', 'Party', 'commands']
|
||||
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the',
|
||||
... 'Party']
|
||||
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> references = [reference1, reference2, reference3]
|
||||
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
||||
0.9444...
|
||||
>>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS
|
||||
0.5714...
|
||||
>>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS
|
||||
0.5882352941176471
|
||||
>>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS
|
||||
0.07692...
|
||||
:param references: A list of reference translations.
|
||||
:type references: list(list(str))
|
||||
:param hypothesis: A hypothesis translation.
|
||||
:type hypothesis: list(str)
|
||||
:param n: The ngram order.
|
||||
:type n: int
|
||||
:return: BLEU's modified precision for the nth order ngram.
|
||||
:rtype: Fraction
|
||||
"""
|
||||
# Extracts all ngrams in hypothesis
|
||||
# Set an empty Counter if hypothesis is empty.
|
||||
|
||||
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
||||
# Extract a union of references' counts.
|
||||
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
||||
max_counts = {}
|
||||
for reference in references:
|
||||
reference_counts = (
|
||||
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
||||
)
|
||||
for ngram in counts:
|
||||
max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram])
|
||||
|
||||
# Assigns the intersection between hypothesis and references' counts.
|
||||
clipped_counts = {
|
||||
ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
||||
}
|
||||
|
||||
numerator = sum(clipped_counts.values())
|
||||
# Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
||||
# Usually this happens when the ngram order is > len(reference).
|
||||
denominator = max(1, sum(counts.values()))
|
||||
|
||||
return Fraction(numerator, denominator, _normalize=False)
|
||||
|
||||
|
||||
def closest_ref_length(references, hyp_len):
|
||||
"""
|
||||
This function finds the reference that is the closest length to the
|
||||
hypothesis. The closest reference length is referred to as *r* variable
|
||||
from the brevity penalty formula in Papineni et. al. (2002)
|
||||
:param references: A list of reference translations.
|
||||
:type references: list(list(str))
|
||||
:param hyp_len: The length of the hypothesis.
|
||||
:type hyp_len: int
|
||||
:return: The length of the reference that's closest to the hypothesis.
|
||||
:rtype: int
|
||||
"""
|
||||
ref_lens = (len(reference) for reference in references)
|
||||
closest_ref_len = min(
|
||||
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
||||
)
|
||||
return closest_ref_len
|
||||
|
||||
|
||||
def brevity_penalty(closest_ref_len, hyp_len):
|
||||
"""
|
||||
Calculate brevity penalty.
|
||||
As the modified n-gram precision still has the problem from the short
|
||||
length sentence, brevity penalty is used to modify the overall BLEU
|
||||
score according to length.
|
||||
An example from the paper. There are three references with length 12, 15
|
||||
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
||||
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
||||
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
||||
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
||||
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
||||
>>> references = [reference1, reference2, reference3]
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
1.0
|
||||
In case a hypothesis translation is shorter than the references, penalty is
|
||||
applied.
|
||||
>>> references = [['a'] * 28, ['a'] * 28]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
0.2635971381157267
|
||||
The length of the closest reference is used to compute the penalty. If the
|
||||
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
||||
penalty is applied because the hypothesis length (12) is less then the
|
||||
closest reference length (13).
|
||||
>>> references = [['a'] * 13, ['a'] * 2]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
||||
0.9200...
|
||||
The brevity penalty doesn't depend on reference order. More importantly,
|
||||
when two reference sentences are at the same distance, the shortest
|
||||
reference sentence length is used.
|
||||
>>> references = [['a'] * 13, ['a'] * 11]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
||||
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
||||
>>> bp1 == bp2 == 1
|
||||
True
|
||||
A test example from mteval-v13a.pl (starting from the line 705):
|
||||
>>> references = [['a'] * 11, ['a'] * 8]
|
||||
>>> hypothesis = ['a'] * 7
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
||||
0.8668...
|
||||
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
||||
>>> hypothesis = ['a'] * 7
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
1.0
|
||||
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
||||
sum of all the hypotheses' lengths for a corpus
|
||||
:type hyp_len: int
|
||||
:param closest_ref_len: The length of the closest reference for a single
|
||||
hypothesis OR the sum of all the closest references for every hypotheses.
|
||||
:type closest_ref_len: int
|
||||
:return: BLEU's brevity penalty.
|
||||
:rtype: float
|
||||
"""
|
||||
if hyp_len > closest_ref_len:
|
||||
return 1
|
||||
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
||||
elif hyp_len == 0:
|
||||
return 0
|
||||
else:
|
||||
return math.exp(1 - closest_ref_len / hyp_len)
|
||||
|
||||
|
||||
class SmoothingFunction:
|
||||
"""
|
||||
This is an implementation of the smoothing techniques
|
||||
for segment-level BLEU scores that was presented in
|
||||
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
||||
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
||||
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
||||
"""
|
||||
This will initialize the parameters required for the various smoothing
|
||||
techniques, the default values are set to the numbers used in the
|
||||
experiments from Chen and Cherry (2014).
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
||||
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
||||
... 'commands', 'of', 'the', 'party']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
||||
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
||||
... 'Party', 'commands']
|
||||
>>> chencherry = SmoothingFunction()
|
||||
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
||||
0.4489...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
||||
0.4905...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
||||
0.4135...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
||||
0.4905...
|
||||
:param epsilon: the epsilon value use in method 1
|
||||
:type epsilon: float
|
||||
:param alpha: the alpha value use in method 6
|
||||
:type alpha: int
|
||||
:param k: the k value use in method 4
|
||||
:type k: int
|
||||
"""
|
||||
self.epsilon = epsilon
|
||||
self.alpha = alpha
|
||||
self.k = k
|
||||
|
||||
def method0(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
No smoothing.
|
||||
"""
|
||||
p_n_new = []
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator != 0:
|
||||
p_n_new.append(p_i)
|
||||
else:
|
||||
_msg = str(
|
||||
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
||||
"Therefore the BLEU score evaluates to 0, independently of\n"
|
||||
"how many N-gram overlaps of lower order it contains.\n"
|
||||
"Consider using lower n-gram order or use "
|
||||
"SmoothingFunction()"
|
||||
).format(i + 1)
|
||||
warnings.warn(_msg)
|
||||
# When numerator==0 where denonminator==0 or !=0, the result
|
||||
# for the precision score should be equal to 0 or undefined.
|
||||
# Due to BLEU geometric mean computation in logarithm space,
|
||||
# we we need to take the return sys.float_info.min such that
|
||||
# math.log(sys.float_info.min) returns a 0 precision score.
|
||||
p_n_new.append(sys.float_info.min)
|
||||
return p_n_new
|
||||
|
||||
def method1(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
||||
"""
|
||||
return [
|
||||
(p_i.numerator + self.epsilon) / p_i.denominator
|
||||
if p_i.numerator == 0
|
||||
else p_i
|
||||
for p_i in p_n
|
||||
]
|
||||
|
||||
def method2(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 2: Add 1 to both numerator and denominator from
|
||||
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
||||
machine translation quality using longest common subsequence and
|
||||
skip-bigram statistics. In ACL04.
|
||||
"""
|
||||
return [
|
||||
Fraction(p_i.numerator + 1, p_i.denominator + 1, _normalize=False)
|
||||
for p_i in p_n
|
||||
]
|
||||
|
||||
def method3(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 3: NIST geometric sequence smoothing
|
||||
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
||||
precision score whose matching n-gram count is null.
|
||||
k is 1 for the first 'n' value for which the n-gram match count is null/
|
||||
For example, if the text contains:
|
||||
- one 2-gram match
|
||||
- and (consequently) two 1-gram matches
|
||||
the n-gram count for each individual precision score would be:
|
||||
- n=1 => prec_count = 2 (two unigrams)
|
||||
- n=2 => prec_count = 1 (one bigram)
|
||||
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
||||
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
||||
"""
|
||||
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator == 0:
|
||||
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
||||
incvnt += 1
|
||||
return p_n
|
||||
|
||||
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 4:
|
||||
Shorter translations may have inflated precision values due to having
|
||||
smaller denominators; therefore, we give them proportionally
|
||||
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
||||
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator == 0 and hyp_len != 0:
|
||||
incvnt = i + 1 * self.k / math.log(
|
||||
hyp_len
|
||||
) # Note that this K is different from the K from NIST.
|
||||
p_n[i] = incvnt / p_i.denominator
|
||||
return p_n
|
||||
|
||||
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 5:
|
||||
The matched counts for similar values of n should be similar. To a
|
||||
calculate the n-gram matched count, it averages the n−1, n and n+1 gram
|
||||
matched counts.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
m = {}
|
||||
# Requires an precision value for an addition ngram order.
|
||||
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
||||
m[-1] = p_n[0] + 1
|
||||
for i, p_i in enumerate(p_n):
|
||||
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
||||
m[i] = p_n[i]
|
||||
return p_n
|
||||
|
||||
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 6:
|
||||
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
||||
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
||||
between pn and pn−1 will be the same as that between pn−1 and pn−2; from
|
||||
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
||||
Gradient Ascent. In NAACL.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
# This smoothing only works when p_1 and p_2 is non-zero.
|
||||
# Raise an error with an appropriate message when the input is too short
|
||||
# to use this smoothing technique.
|
||||
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
||||
for i, p_i in enumerate(p_n):
|
||||
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
||||
continue
|
||||
else:
|
||||
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
||||
# No. of ngrams in translation that matches the reference.
|
||||
m = p_i.numerator
|
||||
# No. of ngrams in translation.
|
||||
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
||||
# Calculates the interpolated precision.
|
||||
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
||||
return p_n
|
||||
|
||||
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 7:
|
||||
Interpolates methods 4 and 5.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
||||
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
||||
return p_n
|
@ -1,80 +0,0 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# -*- coding:utf-8 -*-
|
||||
import argparse
|
||||
from evaluator.CodeBLEU import bleu, weighted_ngram_match, syntax_match, dataflow_match
|
||||
# import evaluator.CodeBLEU.weighted_ngram_match
|
||||
# import evaluator.CodeBLEU.syntax_match
|
||||
# import evaluator.CodeBLEU.dataflow_match
|
||||
|
||||
|
||||
def get_codebleu(refs, hyp, lang, params='0.25,0.25,0.25,0.25'):
|
||||
if not isinstance(refs, list):
|
||||
refs = [refs]
|
||||
alpha, beta, gamma, theta = [float(x) for x in params.split(',')]
|
||||
|
||||
# preprocess inputs
|
||||
pre_references = [[x.strip() for x in open(file, 'r', encoding='utf-8').readlines()] for file in refs]
|
||||
hypothesis = [x.strip() for x in open(hyp, 'r', encoding='utf-8').readlines()]
|
||||
|
||||
for i in range(len(pre_references)):
|
||||
assert len(hypothesis) == len(pre_references[i])
|
||||
|
||||
references = []
|
||||
for i in range(len(hypothesis)):
|
||||
ref_for_instance = []
|
||||
for j in range(len(pre_references)):
|
||||
ref_for_instance.append(pre_references[j][i])
|
||||
references.append(ref_for_instance)
|
||||
assert len(references) == len(pre_references) * len(hypothesis)
|
||||
|
||||
# calculate ngram match (BLEU)
|
||||
tokenized_hyps = [x.split() for x in hypothesis]
|
||||
tokenized_refs = [[x.split() for x in reference] for reference in references]
|
||||
|
||||
ngram_match_score = bleu.corpus_bleu(tokenized_refs, tokenized_hyps)
|
||||
|
||||
# calculate weighted ngram match
|
||||
keywords = [x.strip() for x in open('/export/share/wang.y/workspace/CodeT5Full/finetune/evaluator/CodeBLEU/keywords/' + lang + '.txt', 'r', encoding='utf-8').readlines()]
|
||||
|
||||
def make_weights(reference_tokens, key_word_list):
|
||||
return {token: 1 if token in key_word_list else 0.2 for token in reference_tokens}
|
||||
|
||||
tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)] \
|
||||
for reference_tokens in reference] for reference in tokenized_refs]
|
||||
|
||||
weighted_ngram_match_score = weighted_ngram_match.corpus_bleu(tokenized_refs_with_weights, tokenized_hyps)
|
||||
|
||||
# calculate syntax match
|
||||
syntax_match_score = syntax_match.corpus_syntax_match(references, hypothesis, lang)
|
||||
|
||||
# calculate dataflow match
|
||||
dataflow_match_score = dataflow_match.corpus_dataflow_match(references, hypothesis, lang)
|
||||
|
||||
print('ngram match: {0}, weighted ngram match: {1}, syntax_match: {2}, dataflow_match: {3}'. \
|
||||
format(ngram_match_score, weighted_ngram_match_score, syntax_match_score, dataflow_match_score))
|
||||
|
||||
code_bleu_score = alpha * ngram_match_score \
|
||||
+ beta * weighted_ngram_match_score \
|
||||
+ gamma * syntax_match_score \
|
||||
+ theta * dataflow_match_score
|
||||
|
||||
return code_bleu_score
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--refs', type=str, nargs='+', required=True,
|
||||
help='reference files')
|
||||
parser.add_argument('--hyp', type=str, required=True,
|
||||
help='hypothesis file')
|
||||
parser.add_argument('--lang', type=str, required=True,
|
||||
choices=['java', 'js', 'c_sharp', 'php', 'go', 'python', 'ruby'],
|
||||
help='programming language')
|
||||
parser.add_argument('--params', type=str, default='0.25,0.25,0.25,0.25',
|
||||
help='alpha, beta and gamma')
|
||||
|
||||
args = parser.parse_args()
|
||||
code_bleu_score = get_codebleu(args.refs, args.hyp, args.lang, args.params)
|
||||
print('CodeBLEU score: ', code_bleu_score)
|
@ -1,148 +0,0 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
from evaluator.CodeBLEU.parser import DFG_python, DFG_java, DFG_ruby, DFG_go, DFG_php, DFG_javascript, DFG_csharp
|
||||
from evaluator.CodeBLEU.parser import (remove_comments_and_docstrings,
|
||||
tree_to_token_index,
|
||||
index_to_code_token,
|
||||
tree_to_variable_index)
|
||||
from tree_sitter import Language, Parser
|
||||
import pdb
|
||||
|
||||
parser_path = '/export/share/wang.y/workspace/CodeT5Full/finetune/evaluator/CodeBLEU/parser'
|
||||
dfg_function = {
|
||||
'python': DFG_python,
|
||||
'java': DFG_java,
|
||||
'ruby': DFG_ruby,
|
||||
'go': DFG_go,
|
||||
'php': DFG_php,
|
||||
'javascript': DFG_javascript,
|
||||
'c_sharp': DFG_csharp,
|
||||
}
|
||||
|
||||
|
||||
def calc_dataflow_match(references, candidate, lang):
|
||||
return corpus_dataflow_match([references], [candidate], lang)
|
||||
|
||||
|
||||
def corpus_dataflow_match(references, candidates, lang):
|
||||
LANGUAGE = Language('{}/my-languages.so'.format(parser_path), lang)
|
||||
parser = Parser()
|
||||
parser.set_language(LANGUAGE)
|
||||
parser = [parser, dfg_function[lang]]
|
||||
match_count = 0
|
||||
total_count = 0
|
||||
|
||||
for i in range(len(candidates)):
|
||||
references_sample = references[i]
|
||||
candidate = candidates[i]
|
||||
for reference in references_sample:
|
||||
try:
|
||||
candidate = remove_comments_and_docstrings(candidate, 'java')
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
reference = remove_comments_and_docstrings(reference, 'java')
|
||||
except:
|
||||
pass
|
||||
|
||||
cand_dfg = get_data_flow(candidate, parser)
|
||||
ref_dfg = get_data_flow(reference, parser)
|
||||
|
||||
normalized_cand_dfg = normalize_dataflow(cand_dfg)
|
||||
normalized_ref_dfg = normalize_dataflow(ref_dfg)
|
||||
|
||||
if len(normalized_ref_dfg) > 0:
|
||||
total_count += len(normalized_ref_dfg)
|
||||
for dataflow in normalized_ref_dfg:
|
||||
if dataflow in normalized_cand_dfg:
|
||||
match_count += 1
|
||||
normalized_cand_dfg.remove(dataflow)
|
||||
if total_count == 0:
|
||||
print(
|
||||
"WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to 0. Please consider ignoring this score.")
|
||||
return 0
|
||||
score = match_count / total_count
|
||||
return score
|
||||
|
||||
|
||||
def get_data_flow(code, parser):
|
||||
try:
|
||||
tree = parser[0].parse(bytes(code, 'utf8'))
|
||||
root_node = tree.root_node
|
||||
tokens_index = tree_to_token_index(root_node)
|
||||
code = code.split('\n')
|
||||
code_tokens = [index_to_code_token(x, code) for x in tokens_index]
|
||||
index_to_code = {}
|
||||
for idx, (index, code) in enumerate(zip(tokens_index, code_tokens)):
|
||||
index_to_code[index] = (idx, code)
|
||||
try:
|
||||
DFG, _ = parser[1](root_node, index_to_code, {})
|
||||
except:
|
||||
DFG = []
|
||||
DFG = sorted(DFG, key=lambda x: x[1])
|
||||
indexs = set()
|
||||
for d in DFG:
|
||||
if len(d[-1]) != 0:
|
||||
indexs.add(d[1])
|
||||
for x in d[-1]:
|
||||
indexs.add(x)
|
||||
new_DFG = []
|
||||
for d in DFG:
|
||||
if d[1] in indexs:
|
||||
new_DFG.append(d)
|
||||
codes = code_tokens
|
||||
dfg = new_DFG
|
||||
except:
|
||||
codes = code.split()
|
||||
dfg = []
|
||||
# merge nodes
|
||||
dic = {}
|
||||
for d in dfg:
|
||||
if d[1] not in dic:
|
||||
dic[d[1]] = d
|
||||
else:
|
||||
dic[d[1]] = (d[0], d[1], d[2], list(set(dic[d[1]][3] + d[3])), list(set(dic[d[1]][4] + d[4])))
|
||||
DFG = []
|
||||
for d in dic:
|
||||
DFG.append(dic[d])
|
||||
dfg = DFG
|
||||
return dfg
|
||||
|
||||
|
||||
def normalize_dataflow_item(dataflow_item):
|
||||
var_name = dataflow_item[0]
|
||||
var_pos = dataflow_item[1]
|
||||
relationship = dataflow_item[2]
|
||||
par_vars_name_list = dataflow_item[3]
|
||||
par_vars_pos_list = dataflow_item[4]
|
||||
|
||||
var_names = list(set(par_vars_name_list + [var_name]))
|
||||
norm_names = {}
|
||||
for i in range(len(var_names)):
|
||||
norm_names[var_names[i]] = 'var_' + str(i)
|
||||
|
||||
norm_var_name = norm_names[var_name]
|
||||
relationship = dataflow_item[2]
|
||||
norm_par_vars_name_list = [norm_names[x] for x in par_vars_name_list]
|
||||
|
||||
return (norm_var_name, relationship, norm_par_vars_name_list)
|
||||
|
||||
|
||||
def normalize_dataflow(dataflow):
|
||||
var_dict = {}
|
||||
i = 0
|
||||
normalized_dataflow = []
|
||||
for item in dataflow:
|
||||
var_name = item[0]
|
||||
relationship = item[2]
|
||||
par_vars_name_list = item[3]
|
||||
for name in par_vars_name_list:
|
||||
if name not in var_dict:
|
||||
var_dict[name] = 'var_' + str(i)
|
||||
i += 1
|
||||
if var_name not in var_dict:
|
||||
var_dict[var_name] = 'var_' + str(i)
|
||||
i += 1
|
||||
normalized_dataflow.append((var_dict[var_name], relationship, [var_dict[x] for x in par_vars_name_list]))
|
||||
return normalized_dataflow
|
@ -1,107 +0,0 @@
|
||||
abstract
|
||||
as
|
||||
base
|
||||
bool
|
||||
break
|
||||
byte
|
||||
case
|
||||
catch
|
||||
char
|
||||
checked
|
||||
class
|
||||
const
|
||||
continue
|
||||
decimal
|
||||
default
|
||||
delegate
|
||||
do
|
||||
double
|
||||
else
|
||||
enum
|
||||
event
|
||||
explicit
|
||||
extern
|
||||
false
|
||||
finally
|
||||
fixed
|
||||
float
|
||||
for
|
||||
foreach
|
||||
goto
|
||||
if
|
||||
implicit
|
||||
in
|
||||
int
|
||||
interface
|
||||
internal
|
||||
is
|
||||
lock
|
||||
long
|
||||
namespace
|
||||
new
|
||||
null
|
||||
object
|
||||
operator
|
||||
out
|
||||
override
|
||||
params
|
||||
private
|
||||
protected
|
||||
public
|
||||
readonly
|
||||
ref
|
||||
return
|
||||
sbyte
|
||||
sealed
|
||||
short
|
||||
sizeof
|
||||
stackalloc
|
||||
static
|
||||
string
|
||||
struct
|
||||
switch
|
||||
this
|
||||
throw
|
||||
true
|
||||
try
|
||||
typeof
|
||||
uint
|
||||
ulong
|
||||
unchecked
|
||||
unsafe
|
||||
ushort
|
||||
using
|
||||
virtual
|
||||
void
|
||||
volatile
|
||||
while
|
||||
add
|
||||
alias
|
||||
ascending
|
||||
async
|
||||
await
|
||||
by
|
||||
descending
|
||||
dynamic
|
||||
equals
|
||||
from
|
||||
get
|
||||
global
|
||||
group
|
||||
into
|
||||
join
|
||||
let
|
||||
nameof
|
||||
notnull
|
||||
on
|
||||
orderby
|
||||
partial
|
||||
remove
|
||||
select
|
||||
set
|
||||
unmanaged
|
||||
value
|
||||
var
|
||||
when
|
||||
where
|
||||
yield
|
@ -1,50 +0,0 @@
|
||||
abstract
|
||||
assert
|
||||
boolean
|
||||
break
|
||||
byte
|
||||
case
|
||||
catch
|
||||
char
|
||||
class
|
||||
const
|
||||
continue
|
||||
default
|
||||
do
|
||||
double
|
||||
else
|
||||
enum
|
||||
extends
|
||||
final
|
||||
finally
|
||||
float
|
||||
for
|
||||
goto
|
||||
if
|
||||
implements
|
||||
import
|
||||
instanceof
|
||||
int
|
||||
interface
|
||||
long
|
||||
native
|
||||
new
|
||||
package
|
||||
private
|
||||
protected
|
||||
public
|
||||
return
|
||||
short
|
||||
static
|
||||
strictfp
|
||||
super
|
||||
switch
|
||||
synchronized
|
||||
this
|
||||
throw
|
||||
throws
|
||||
transient
|
||||
try
|
||||
void
|
||||
volatile
|
||||
while
|
File diff suppressed because it is too large
Load Diff
@ -1,8 +0,0 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
from .utils import (remove_comments_and_docstrings,
|
||||
tree_to_token_index,
|
||||
index_to_code_token,
|
||||
tree_to_variable_index)
|
||||
from .DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
@ -1,21 +0,0 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
from tree_sitter import Language, Parser
|
||||
|
||||
Language.build_library(
|
||||
# Store the library in the `build` directory
|
||||
'my-languages.so',
|
||||
|
||||
# Include one or more languages
|
||||
[
|
||||
'tree-sitter-go',
|
||||
'tree-sitter-javascript',
|
||||
'tree-sitter-python',
|
||||
'tree-sitter-php',
|
||||
'tree-sitter-java',
|
||||
'tree-sitter-ruby',
|
||||
'tree-sitter-c-sharp',
|
||||
]
|
||||
)
|
||||
|
@ -1,8 +0,0 @@
|
||||
git clone https://github.com/tree-sitter/tree-sitter-go
|
||||
git clone https://github.com/tree-sitter/tree-sitter-javascript
|
||||
git clone https://github.com/tree-sitter/tree-sitter-python
|
||||
git clone https://github.com/tree-sitter/tree-sitter-ruby
|
||||
git clone https://github.com/tree-sitter/tree-sitter-php
|
||||
git clone https://github.com/tree-sitter/tree-sitter-java
|
||||
git clone https://github.com/tree-sitter/tree-sitter-c-sharp
|
||||
python build.py
|
Binary file not shown.
@ -1,108 +0,0 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import re
|
||||
from io import StringIO
|
||||
import tokenize
|
||||
|
||||
|
||||
def remove_comments_and_docstrings(source, lang):
|
||||
if lang in ['python']:
|
||||
"""
|
||||
Returns 'source' minus comments and docstrings.
|
||||
"""
|
||||
io_obj = StringIO(source)
|
||||
out = ""
|
||||
prev_toktype = tokenize.INDENT
|
||||
last_lineno = -1
|
||||
last_col = 0
|
||||
for tok in tokenize.generate_tokens(io_obj.readline):
|
||||
token_type = tok[0]
|
||||
token_string = tok[1]
|
||||
start_line, start_col = tok[2]
|
||||
end_line, end_col = tok[3]
|
||||
ltext = tok[4]
|
||||
if start_line > last_lineno:
|
||||
last_col = 0
|
||||
if start_col > last_col:
|
||||
out += (" " * (start_col - last_col))
|
||||
# Remove comments:
|
||||
if token_type == tokenize.COMMENT:
|
||||
pass
|
||||
# This series of conditionals removes docstrings:
|
||||
elif token_type == tokenize.STRING:
|
||||
if prev_toktype != tokenize.INDENT:
|
||||
# This is likely a docstring; double-check we're not inside an operator:
|
||||
if prev_toktype != tokenize.NEWLINE:
|
||||
if start_col > 0:
|
||||
out += token_string
|
||||
else:
|
||||
out += token_string
|
||||
prev_toktype = token_type
|
||||
last_col = end_col
|
||||
last_lineno = end_line
|
||||
temp = []
|
||||
for x in out.split('\n'):
|
||||
if x.strip() != "":
|
||||
temp.append(x)
|
||||
return '\n'.join(temp)
|
||||
elif lang in ['ruby']:
|
||||
return source
|
||||
else:
|
||||
def replacer(match):
|
||||
s = match.group(0)
|
||||
if s.startswith('/'):
|
||||
return " " # note: a space and not an empty string
|
||||
else:
|
||||
return s
|
||||
|
||||
pattern = re.compile(
|
||||
r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
|
||||
re.DOTALL | re.MULTILINE
|
||||
)
|
||||
temp = []
|
||||
for x in re.sub(pattern, replacer, source).split('\n'):
|
||||
if x.strip() != "":
|
||||
temp.append(x)
|
||||
return '\n'.join(temp)
|
||||
|
||||
|
||||
def tree_to_token_index(root_node):
|
||||
if (len(root_node.children) == 0 or root_node.type in ['string_literal', 'string',
|
||||
'character_literal']) and root_node.type != 'comment':
|
||||
return [(root_node.start_point, root_node.end_point)]
|
||||
else:
|
||||
code_tokens = []
|
||||
for child in root_node.children:
|
||||
code_tokens += tree_to_token_index(child)
|
||||
return code_tokens
|
||||
|
||||
|
||||
def tree_to_variable_index(root_node, index_to_code):
|
||||
if (len(root_node.children) == 0 or root_node.type in ['string_literal', 'string',
|
||||
'character_literal']) and root_node.type != 'comment':
|
||||
index = (root_node.start_point, root_node.end_point)
|
||||
_, code = index_to_code[index]
|
||||
if root_node.type != code:
|
||||
return [(root_node.start_point, root_node.end_point)]
|
||||
else:
|
||||
return []
|
||||
else:
|
||||
code_tokens = []
|
||||
for child in root_node.children:
|
||||
code_tokens += tree_to_variable_index(child, index_to_code)
|
||||
return code_tokens
|
||||
|
||||
|
||||
def index_to_code_token(index, code):
|
||||
start_point = index[0]
|
||||
end_point = index[1]
|
||||
if start_point[0] == end_point[0]:
|
||||
s = code[start_point[0]][start_point[1]:end_point[1]]
|
||||
else:
|
||||
s = ""
|
||||
s += code[start_point[0]][start_point[1]:]
|
||||
for i in range(start_point[0] + 1, end_point[0]):
|
||||
s += code[i]
|
||||
s += code[end_point[0]][:end_point[1]]
|
||||
return s
|
@ -1 +0,0 @@
|
||||
python calc_code_bleu.py --refs reference_files --hyp candidate_file --language java ( or c_sharp) --params 0.25,0.25,0.25,0.25(default)
|
@ -1,77 +0,0 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
from evaluator.CodeBLEU.parser import DFG_python, DFG_java, DFG_ruby, DFG_go, DFG_php, DFG_javascript, DFG_csharp
|
||||
from evaluator.CodeBLEU.parser import (remove_comments_and_docstrings,
|
||||
tree_to_token_index,
|
||||
index_to_code_token,
|
||||
tree_to_variable_index)
|
||||
from tree_sitter import Language, Parser
|
||||
|
||||
parser_path = '/export/share/wang.y/workspace/CodeT5Full/finetune/evaluator/CodeBLEU/parser'
|
||||
dfg_function = {
|
||||
'python': DFG_python,
|
||||
'java': DFG_java,
|
||||
'ruby': DFG_ruby,
|
||||
'go': DFG_go,
|
||||
'php': DFG_php,
|
||||
'javascript': DFG_javascript,
|
||||
'c_sharp': DFG_csharp,
|
||||
}
|
||||
|
||||
|
||||
def calc_syntax_match(references, candidate, lang):
|
||||
return corpus_syntax_match([references], [candidate], lang)
|
||||
|
||||
|
||||
def corpus_syntax_match(references, candidates, lang):
|
||||
JAVA_LANGUAGE = Language('{}/my-languages.so'.format(parser_path), lang)
|
||||
parser = Parser()
|
||||
parser.set_language(JAVA_LANGUAGE)
|
||||
match_count = 0
|
||||
total_count = 0
|
||||
|
||||
for i in range(len(candidates)):
|
||||
references_sample = references[i]
|
||||
candidate = candidates[i]
|
||||
for reference in references_sample:
|
||||
try:
|
||||
candidate = remove_comments_and_docstrings(candidate, 'java')
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
reference = remove_comments_and_docstrings(reference, 'java')
|
||||
except:
|
||||
pass
|
||||
|
||||
candidate_tree = parser.parse(bytes(candidate, 'utf8')).root_node
|
||||
|
||||
reference_tree = parser.parse(bytes(reference, 'utf8')).root_node
|
||||
|
||||
def get_all_sub_trees(root_node):
|
||||
node_stack = []
|
||||
sub_tree_sexp_list = []
|
||||
depth = 1
|
||||
node_stack.append([root_node, depth])
|
||||
while len(node_stack) != 0:
|
||||
cur_node, cur_depth = node_stack.pop()
|
||||
sub_tree_sexp_list.append([cur_node.sexp(), cur_depth])
|
||||
for child_node in cur_node.children:
|
||||
if len(child_node.children) != 0:
|
||||
depth = cur_depth + 1
|
||||
node_stack.append([child_node, depth])
|
||||
return sub_tree_sexp_list
|
||||
|
||||
cand_sexps = [x[0] for x in get_all_sub_trees(candidate_tree)]
|
||||
ref_sexps = get_all_sub_trees(reference_tree)
|
||||
|
||||
# print(cand_sexps)
|
||||
# print(ref_sexps)
|
||||
|
||||
for sub_tree, depth in ref_sexps:
|
||||
if sub_tree in cand_sexps:
|
||||
match_count += 1
|
||||
total_count += len(ref_sexps)
|
||||
|
||||
score = match_count / total_count
|
||||
return score
|
@ -1,106 +0,0 @@
|
||||
# Natural Language Toolkit: Utility functions
|
||||
#
|
||||
# Copyright (C) 2001-2020 NLTK Project
|
||||
# Author: Steven Bird <stevenbird1@gmail.com>
|
||||
# URL: <http://nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
from itertools import chain
|
||||
|
||||
def pad_sequence(
|
||||
sequence,
|
||||
n,
|
||||
pad_left=False,
|
||||
pad_right=False,
|
||||
left_pad_symbol=None,
|
||||
right_pad_symbol=None,
|
||||
):
|
||||
"""
|
||||
Returns a padded sequence of items before ngram extraction.
|
||||
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
||||
['<s>', 1, 2, 3, 4, 5, '</s>']
|
||||
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
||||
['<s>', 1, 2, 3, 4, 5]
|
||||
>>> list(pad_sequence([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
||||
[1, 2, 3, 4, 5, '</s>']
|
||||
:param sequence: the source data to be padded
|
||||
:type sequence: sequence or iter
|
||||
:param n: the degree of the ngrams
|
||||
:type n: int
|
||||
:param pad_left: whether the ngrams should be left-padded
|
||||
:type pad_left: bool
|
||||
:param pad_right: whether the ngrams should be right-padded
|
||||
:type pad_right: bool
|
||||
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
||||
:type left_pad_symbol: any
|
||||
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
||||
:type right_pad_symbol: any
|
||||
:rtype: sequence or iter
|
||||
"""
|
||||
sequence = iter(sequence)
|
||||
if pad_left:
|
||||
sequence = chain((left_pad_symbol,) * (n - 1), sequence)
|
||||
if pad_right:
|
||||
sequence = chain(sequence, (right_pad_symbol,) * (n - 1))
|
||||
return sequence
|
||||
|
||||
|
||||
# add a flag to pad the sequence so we get peripheral ngrams?
|
||||
|
||||
|
||||
def ngrams(
|
||||
sequence,
|
||||
n,
|
||||
pad_left=False,
|
||||
pad_right=False,
|
||||
left_pad_symbol=None,
|
||||
right_pad_symbol=None,
|
||||
):
|
||||
"""
|
||||
Return the ngrams generated from a sequence of items, as an iterator.
|
||||
For example:
|
||||
>>> from nltk.util import ngrams
|
||||
>>> list(ngrams([1,2,3,4,5], 3))
|
||||
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
|
||||
Wrap with list for a list version of this function. Set pad_left
|
||||
or pad_right to true in order to get additional ngrams:
|
||||
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True))
|
||||
[(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]
|
||||
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
||||
[(1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
||||
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
||||
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5)]
|
||||
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
||||
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
||||
:param sequence: the source data to be converted into ngrams
|
||||
:type sequence: sequence or iter
|
||||
:param n: the degree of the ngrams
|
||||
:type n: int
|
||||
:param pad_left: whether the ngrams should be left-padded
|
||||
:type pad_left: bool
|
||||
:param pad_right: whether the ngrams should be right-padded
|
||||
:type pad_right: bool
|
||||
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
||||
:type left_pad_symbol: any
|
||||
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
||||
:type right_pad_symbol: any
|
||||
:rtype: sequence or iter
|
||||
"""
|
||||
sequence = pad_sequence(
|
||||
sequence, n, pad_left, pad_right, left_pad_symbol, right_pad_symbol
|
||||
)
|
||||
|
||||
history = []
|
||||
while n > 1:
|
||||
# PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator
|
||||
try:
|
||||
next_item = next(sequence)
|
||||
except StopIteration:
|
||||
# no more data, terminate the generator
|
||||
return
|
||||
history.append(next_item)
|
||||
n -= 1
|
||||
for item in sequence:
|
||||
history.append(item)
|
||||
yield tuple(history)
|
||||
del history[0]
|
@ -1,558 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Natural Language Toolkit: BLEU Score
|
||||
#
|
||||
# Copyright (C) 2001-2020 NLTK Project
|
||||
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
||||
# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
|
||||
# URL: <http://nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
"""BLEU score implementation."""
|
||||
|
||||
import math
|
||||
import sys
|
||||
from fractions import Fraction
|
||||
import warnings
|
||||
from collections import Counter
|
||||
|
||||
from evaluator.CodeBLEU.utils import ngrams
|
||||
import pdb
|
||||
|
||||
|
||||
def sentence_bleu(
|
||||
references,
|
||||
hypothesis,
|
||||
weights=(0.25, 0.25, 0.25, 0.25),
|
||||
smoothing_function=None,
|
||||
auto_reweigh=False,
|
||||
):
|
||||
"""
|
||||
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
||||
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
||||
"BLEU: a method for automatic evaluation of machine translation."
|
||||
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
||||
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
||||
... 'that', 'party', 'direct']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
||||
... 'heed', 'Party', 'commands']
|
||||
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the',
|
||||
... 'Party']
|
||||
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
||||
0.5045...
|
||||
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
||||
value 0. This is because the precision for the order of n-grams without
|
||||
overlap is 0, and the geometric mean in the final BLEU score computation
|
||||
multiplies the 0 with the precision of other n-grams. This results in 0
|
||||
(independently of the precision of the othe n-gram orders). The following
|
||||
example has zero 3-gram and 4-gram overlaps:
|
||||
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
||||
0.0
|
||||
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
||||
function can be used.
|
||||
>>> chencherry = SmoothingFunction()
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
||||
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
||||
0.0370...
|
||||
The default BLEU calculates a score for up to 4-grams using uniform
|
||||
weights (this is called BLEU-4). To evaluate your translations with
|
||||
higher/lower order ngrams, use customized weights. E.g. when accounting
|
||||
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
||||
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
||||
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
||||
0.3920...
|
||||
:param references: reference sentences
|
||||
:type references: list(list(str))
|
||||
:param hypothesis: a hypothesis sentence
|
||||
:type hypothesis: list(str)
|
||||
:param weights: weights for unigrams, bigrams, trigrams and so on
|
||||
:type weights: list(float)
|
||||
:param smoothing_function:
|
||||
:type smoothing_function: SmoothingFunction
|
||||
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
||||
:type auto_reweigh: bool
|
||||
:return: The sentence-level BLEU score.
|
||||
:rtype: float
|
||||
"""
|
||||
return corpus_bleu(
|
||||
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
||||
)
|
||||
|
||||
|
||||
def corpus_bleu(
|
||||
list_of_references,
|
||||
hypotheses,
|
||||
weights=(0.25, 0.25, 0.25, 0.25),
|
||||
smoothing_function=None,
|
||||
auto_reweigh=False,
|
||||
):
|
||||
"""
|
||||
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
||||
the hypotheses and their respective references.
|
||||
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
||||
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
||||
the micro-average precision (i.e. summing the numerators and denominators
|
||||
for each hypothesis-reference(s) pairs before the division).
|
||||
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
||||
... 'ensures', 'that', 'the', 'military', 'always',
|
||||
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
||||
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
||||
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
||||
... 'heed', 'Party', 'commands']
|
||||
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
||||
... 'guarantees', 'the', 'military', 'forces', 'always',
|
||||
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
||||
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
||||
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
||||
... 'of', 'the', 'party']
|
||||
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
||||
... 'interested', 'in', 'world', 'history']
|
||||
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
||||
... 'because', 'he', 'read', 'the', 'book']
|
||||
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
||||
>>> hypotheses = [hyp1, hyp2]
|
||||
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
||||
0.5920...
|
||||
The example below show that corpus_bleu() is different from averaging
|
||||
sentence_bleu() for hypotheses
|
||||
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
||||
>>> score2 = sentence_bleu([ref2a], hyp2)
|
||||
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
||||
0.6223...
|
||||
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
||||
:type list_of_references: list(list(list(str)))
|
||||
:param hypotheses: a list of hypothesis sentences
|
||||
:type hypotheses: list(list(str))
|
||||
:param weights: weights for unigrams, bigrams, trigrams and so on
|
||||
:type weights: list(float)
|
||||
:param smoothing_function:
|
||||
:type smoothing_function: SmoothingFunction
|
||||
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
||||
:type auto_reweigh: bool
|
||||
:return: The corpus-level BLEU score.
|
||||
:rtype: float
|
||||
"""
|
||||
# Before proceeding to compute BLEU, perform sanity checks.
|
||||
|
||||
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
||||
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
||||
hyp_lengths, ref_lengths = 0, 0
|
||||
|
||||
assert len(list_of_references) == len(hypotheses), (
|
||||
"The number of hypotheses and their reference(s) should be the " "same "
|
||||
)
|
||||
|
||||
# Iterate through each hypothesis and their corresponding references.
|
||||
for references, hypothesis in zip(list_of_references, hypotheses):
|
||||
# For each order of ngram, calculate the numerator and
|
||||
# denominator for the corpus-level modified precision.
|
||||
for i, _ in enumerate(weights, start=1):
|
||||
p_i_numeraotr, p_i_denominator = modified_recall(references, hypothesis, i)
|
||||
p_numerators[i] += p_i_numeraotr
|
||||
p_denominators[i] += p_i_denominator
|
||||
|
||||
# Calculate the hypothesis length and the closest reference length.
|
||||
# Adds them to the corpus-level hypothesis and reference counts.
|
||||
hyp_len = len(hypothesis)
|
||||
hyp_lengths += hyp_len
|
||||
ref_lengths += closest_ref_length(references, hyp_len)
|
||||
|
||||
# Calculate corpus-level brevity penalty.
|
||||
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
||||
|
||||
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
||||
# order of n-grams < 4 and weights is set at default.
|
||||
if auto_reweigh:
|
||||
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
||||
weights = (1 / hyp_lengths,) * hyp_lengths
|
||||
|
||||
# Collects the various recall values for the different ngram orders.
|
||||
p_n = [
|
||||
(p_numerators[i], p_denominators[i])
|
||||
for i, _ in enumerate(weights, start=1)
|
||||
]
|
||||
|
||||
# Returns 0 if there's no matching n-grams
|
||||
# We only need to check for p_numerators[1] == 0, since if there's
|
||||
# no unigrams, there won't be any higher order ngrams.
|
||||
if p_numerators[1] == 0:
|
||||
return 0
|
||||
|
||||
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
||||
if not smoothing_function:
|
||||
smoothing_function = SmoothingFunction().method1
|
||||
# Smoothen the modified precision.
|
||||
# Note: smoothing_function() may convert values into floats;
|
||||
# it tries to retain the Fraction object as much as the
|
||||
# smoothing method allows.
|
||||
p_n = smoothing_function(
|
||||
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
||||
)
|
||||
# pdb.set_trace()
|
||||
s = (w_i * math.log(p_i[0]/p_i[1]) for w_i, p_i in zip(weights, p_n))
|
||||
s = bp * math.exp(math.fsum(s))
|
||||
return s
|
||||
|
||||
|
||||
def modified_recall(references, hypothesis, n):
|
||||
"""
|
||||
Calculate modified ngram recall.
|
||||
:param references: A list of reference translations.
|
||||
:type references: list(list(str))
|
||||
:param hypothesis: A hypothesis translation.
|
||||
:type hypothesis: list(str)
|
||||
:param n: The ngram order.
|
||||
:type n: int
|
||||
:return: BLEU's modified precision for the nth order ngram.
|
||||
:rtype: Fraction
|
||||
"""
|
||||
# Extracts all ngrams in hypothesis
|
||||
# Set an empty Counter if hypothesis is empty.
|
||||
# pdb.set_trace()
|
||||
numerator = 0
|
||||
denominator = 0
|
||||
|
||||
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
||||
# Extract a union of references' counts.
|
||||
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
||||
max_counts = {}
|
||||
for reference_and_weights in references:
|
||||
reference = reference_and_weights[0]
|
||||
weights = reference_and_weights[1]
|
||||
reference_counts = (
|
||||
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
||||
)
|
||||
# for ngram in reference_counts:
|
||||
# max_counts[ngram] = max(max_counts.get(ngram, 0), counts[ngram])
|
||||
clipped_counts = {
|
||||
ngram: min(count, counts[ngram]) for ngram, count in reference_counts.items()
|
||||
}
|
||||
# reweight
|
||||
if n == 1 and len(weights) == len(reference_counts):
|
||||
def weighted_sum(weights, counts):
|
||||
sum_counts = 0
|
||||
for ngram, count in counts.items():
|
||||
sum_counts += count * (weights[ngram[0]] if ngram[0] in weights else 1)
|
||||
return sum_counts
|
||||
|
||||
numerator += weighted_sum(weights, clipped_counts)
|
||||
denominator += max(1, weighted_sum(weights, reference_counts))
|
||||
|
||||
else:
|
||||
numerator += sum(clipped_counts.values())
|
||||
denominator += max(1, sum(reference_counts.values()))
|
||||
|
||||
# # Assigns the intersection between hypothesis and references' counts.
|
||||
# clipped_counts = {
|
||||
# ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
||||
# }
|
||||
|
||||
# numerator += sum(clipped_counts.values())
|
||||
# # Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
||||
# # Usually this happens when the ngram order is > len(reference).
|
||||
# denominator += max(1, sum(counts.values()))
|
||||
|
||||
#return Fraction(numerator, denominator, _normalize=False)
|
||||
return numerator, denominator
|
||||
|
||||
|
||||
def closest_ref_length(references, hyp_len):
|
||||
"""
|
||||
This function finds the reference that is the closest length to the
|
||||
hypothesis. The closest reference length is referred to as *r* variable
|
||||
from the brevity penalty formula in Papineni et. al. (2002)
|
||||
:param references: A list of reference translations.
|
||||
:type references: list(list(str))
|
||||
:param hyp_len: The length of the hypothesis.
|
||||
:type hyp_len: int
|
||||
:return: The length of the reference that's closest to the hypothesis.
|
||||
:rtype: int
|
||||
"""
|
||||
ref_lens = (len(reference) for reference in references)
|
||||
closest_ref_len = min(
|
||||
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
||||
)
|
||||
return closest_ref_len
|
||||
|
||||
|
||||
def brevity_penalty(closest_ref_len, hyp_len):
|
||||
"""
|
||||
Calculate brevity penalty.
|
||||
As the modified n-gram precision still has the problem from the short
|
||||
length sentence, brevity penalty is used to modify the overall BLEU
|
||||
score according to length.
|
||||
An example from the paper. There are three references with length 12, 15
|
||||
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
||||
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
||||
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
||||
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
||||
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
||||
>>> references = [reference1, reference2, reference3]
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
1.0
|
||||
In case a hypothesis translation is shorter than the references, penalty is
|
||||
applied.
|
||||
>>> references = [['a'] * 28, ['a'] * 28]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
0.2635971381157267
|
||||
The length of the closest reference is used to compute the penalty. If the
|
||||
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
||||
penalty is applied because the hypothesis length (12) is less then the
|
||||
closest reference length (13).
|
||||
>>> references = [['a'] * 13, ['a'] * 2]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
||||
0.9200...
|
||||
The brevity penalty doesn't depend on reference order. More importantly,
|
||||
when two reference sentences are at the same distance, the shortest
|
||||
reference sentence length is used.
|
||||
>>> references = [['a'] * 13, ['a'] * 11]
|
||||
>>> hypothesis = ['a'] * 12
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
||||
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
||||
>>> bp1 == bp2 == 1
|
||||
True
|
||||
A test example from mteval-v13a.pl (starting from the line 705):
|
||||
>>> references = [['a'] * 11, ['a'] * 8]
|
||||
>>> hypothesis = ['a'] * 7
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
||||
0.8668...
|
||||
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
||||
>>> hypothesis = ['a'] * 7
|
||||
>>> hyp_len = len(hypothesis)
|
||||
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
||||
>>> brevity_penalty(closest_ref_len, hyp_len)
|
||||
1.0
|
||||
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
||||
sum of all the hypotheses' lengths for a corpus
|
||||
:type hyp_len: int
|
||||
:param closest_ref_len: The length of the closest reference for a single
|
||||
hypothesis OR the sum of all the closest references for every hypotheses.
|
||||
:type closest_ref_len: int
|
||||
:return: BLEU's brevity penalty.
|
||||
:rtype: float
|
||||
"""
|
||||
if hyp_len > closest_ref_len:
|
||||
return 1
|
||||
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
||||
elif hyp_len == 0:
|
||||
return 0
|
||||
else:
|
||||
return math.exp(1 - closest_ref_len / hyp_len)
|
||||
|
||||
|
||||
class SmoothingFunction:
|
||||
"""
|
||||
This is an implementation of the smoothing techniques
|
||||
for segment-level BLEU scores that was presented in
|
||||
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
||||
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
||||
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
||||
"""
|
||||
This will initialize the parameters required for the various smoothing
|
||||
techniques, the default values are set to the numbers used in the
|
||||
experiments from Chen and Cherry (2014).
|
||||
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
||||
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
||||
... 'commands', 'of', 'the', 'party']
|
||||
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
||||
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
||||
... 'Party', 'commands']
|
||||
>>> chencherry = SmoothingFunction()
|
||||
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
||||
0.4489...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
||||
0.4118...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
||||
0.4905...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
||||
0.4135...
|
||||
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
||||
0.4905...
|
||||
:param epsilon: the epsilon value use in method 1
|
||||
:type epsilon: float
|
||||
:param alpha: the alpha value use in method 6
|
||||
:type alpha: int
|
||||
:param k: the k value use in method 4
|
||||
:type k: int
|
||||
"""
|
||||
self.epsilon = epsilon
|
||||
self.alpha = alpha
|
||||
self.k = k
|
||||
|
||||
def method0(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
No smoothing.
|
||||
"""
|
||||
p_n_new = []
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i[0] != 0:
|
||||
p_n_new.append(p_i)
|
||||
else:
|
||||
_msg = str(
|
||||
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
||||
"Therefore the BLEU score evaluates to 0, independently of\n"
|
||||
"how many N-gram overlaps of lower order it contains.\n"
|
||||
"Consider using lower n-gram order or use "
|
||||
"SmoothingFunction()"
|
||||
).format(i + 1)
|
||||
warnings.warn(_msg)
|
||||
# When numerator==0 where denonminator==0 or !=0, the result
|
||||
# for the precision score should be equal to 0 or undefined.
|
||||
# Due to BLEU geometric mean computation in logarithm space,
|
||||
# we we need to take the return sys.float_info.min such that
|
||||
# math.log(sys.float_info.min) returns a 0 precision score.
|
||||
p_n_new.append(sys.float_info.min)
|
||||
return p_n_new
|
||||
|
||||
def method1(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
||||
"""
|
||||
return [
|
||||
((p_i[0] + self.epsilon), p_i[1])
|
||||
if p_i[0] == 0
|
||||
else p_i
|
||||
for p_i in p_n
|
||||
]
|
||||
|
||||
def method2(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 2: Add 1 to both numerator and denominator from
|
||||
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
||||
machine translation quality using longest common subsequence and
|
||||
skip-bigram statistics. In ACL04.
|
||||
"""
|
||||
return [
|
||||
(p_i[0] + 1, p_i[1] + 1)
|
||||
for p_i in p_n
|
||||
]
|
||||
|
||||
def method3(self, p_n, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 3: NIST geometric sequence smoothing
|
||||
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
||||
precision score whose matching n-gram count is null.
|
||||
k is 1 for the first 'n' value for which the n-gram match count is null/
|
||||
For example, if the text contains:
|
||||
- one 2-gram match
|
||||
- and (consequently) two 1-gram matches
|
||||
the n-gram count for each individual precision score would be:
|
||||
- n=1 => prec_count = 2 (two unigrams)
|
||||
- n=2 => prec_count = 1 (one bigram)
|
||||
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
||||
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
||||
"""
|
||||
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator == 0:
|
||||
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
||||
incvnt += 1
|
||||
return p_n
|
||||
|
||||
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 4:
|
||||
Shorter translations may have inflated precision values due to having
|
||||
smaller denominators; therefore, we give them proportionally
|
||||
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
||||
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
for i, p_i in enumerate(p_n):
|
||||
if p_i.numerator == 0 and hyp_len != 0:
|
||||
incvnt = i + 1 * self.k / math.log(
|
||||
hyp_len
|
||||
) # Note that this K is different from the K from NIST.
|
||||
p_n[i] = incvnt / p_i.denominator
|
||||
return p_n
|
||||
|
||||
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 5:
|
||||
The matched counts for similar values of n should be similar. To a
|
||||
calculate the n-gram matched count, it averages the n−1, n and n+1 gram
|
||||
matched counts.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
m = {}
|
||||
# Requires an precision value for an addition ngram order.
|
||||
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
||||
m[-1] = p_n[0] + 1
|
||||
for i, p_i in enumerate(p_n):
|
||||
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
||||
m[i] = p_n[i]
|
||||
return p_n
|
||||
|
||||
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 6:
|
||||
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
||||
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
||||
between pn and pn−1 will be the same as that between pn−1 and pn−2; from
|
||||
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
||||
Gradient Ascent. In NAACL.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
# This smoothing only works when p_1 and p_2 is non-zero.
|
||||
# Raise an error with an appropriate message when the input is too short
|
||||
# to use this smoothing technique.
|
||||
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
||||
for i, p_i in enumerate(p_n):
|
||||
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
||||
continue
|
||||
else:
|
||||
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
||||
# No. of ngrams in translation that matches the reference.
|
||||
m = p_i.numerator
|
||||
# No. of ngrams in translation.
|
||||
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
||||
# Calculates the interpolated precision.
|
||||
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
||||
return p_n
|
||||
|
||||
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
||||
"""
|
||||
Smoothing method 7:
|
||||
Interpolates methods 4 and 5.
|
||||
"""
|
||||
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
||||
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
||||
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
||||
return p_n
|
@ -1,17 +0,0 @@
|
||||
from tokenizers import ByteLevelBPETokenizer
|
||||
|
||||
tokenizer = ByteLevelBPETokenizer.from_file(
|
||||
"./salesforce/codet5-vocab.json",
|
||||
"./salesforce/codet5-merges.txt"
|
||||
)
|
||||
tokenizer.add_special_tokens([
|
||||
"<pad>",
|
||||
"<s>",
|
||||
"</s>",
|
||||
"<unk>",
|
||||
"<mask>"
|
||||
])
|
||||
|
||||
print(
|
||||
tokenizer.encode("<s> hello <unk> Don't you love 🤗 Transformers <mask> yes . </s>").tokens
|
||||
)
|
134
bleu.py
134
bleu.py
@ -1,134 +0,0 @@
|
||||
# Copyright 2017 Google Inc. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
"""Python implementation of BLEU and smooth-BLEU.
|
||||
|
||||
This module provides a Python implementation of BLEU and smooth-BLEU.
|
||||
Smooth BLEU is computed following the method outlined in the paper:
|
||||
Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic
|
||||
evaluation metrics for machine translation. COLING 2004.
|
||||
"""
|
||||
|
||||
import collections
|
||||
import math
|
||||
|
||||
|
||||
def _get_ngrams(segment, max_order):
|
||||
"""Extracts all n-grams upto a given maximum order from an input segment.
|
||||
|
||||
Args:
|
||||
segment: text segment from which n-grams will be extracted.
|
||||
max_order: maximum length in tokens of the n-grams returned by this
|
||||
methods.
|
||||
|
||||
Returns:
|
||||
The Counter containing all n-grams upto max_order in segment
|
||||
with a count of how many times each n-gram occurred.
|
||||
"""
|
||||
ngram_counts = collections.Counter()
|
||||
for order in range(1, max_order + 1):
|
||||
for i in range(0, len(segment) - order + 1):
|
||||
ngram = tuple(segment[i:i+order])
|
||||
ngram_counts[ngram] += 1
|
||||
return ngram_counts
|
||||
|
||||
|
||||
def compute_bleu(reference_corpus, translation_corpus, max_order=4,
|
||||
smooth=False):
|
||||
"""Computes BLEU score of translated segments against one or more references.
|
||||
|
||||
Args:
|
||||
reference_corpus: list of lists of references for each translation. Each
|
||||
reference should be tokenized into a list of tokens.
|
||||
translation_corpus: list of translations to score. Each translation
|
||||
should be tokenized into a list of tokens.
|
||||
max_order: Maximum n-gram order to use when computing BLEU score.
|
||||
smooth: Whether or not to apply Lin et al. 2004 smoothing.
|
||||
|
||||
Returns:
|
||||
3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram
|
||||
precisions and brevity penalty.
|
||||
"""
|
||||
matches_by_order = [0] * max_order
|
||||
possible_matches_by_order = [0] * max_order
|
||||
reference_length = 0
|
||||
translation_length = 0
|
||||
for (references, translation) in zip(reference_corpus,
|
||||
translation_corpus):
|
||||
reference_length += min(len(r) for r in references)
|
||||
translation_length += len(translation)
|
||||
|
||||
merged_ref_ngram_counts = collections.Counter()
|
||||
for reference in references:
|
||||
merged_ref_ngram_counts |= _get_ngrams(reference, max_order)
|
||||
translation_ngram_counts = _get_ngrams(translation, max_order)
|
||||
overlap = translation_ngram_counts & merged_ref_ngram_counts
|
||||
for ngram in overlap:
|
||||
matches_by_order[len(ngram)-1] += overlap[ngram]
|
||||
for order in range(1, max_order+1):
|
||||
possible_matches = len(translation) - order + 1
|
||||
if possible_matches > 0:
|
||||
possible_matches_by_order[order-1] += possible_matches
|
||||
|
||||
precisions = [0] * max_order
|
||||
for i in range(0, max_order):
|
||||
if smooth:
|
||||
precisions[i] = ((matches_by_order[i] + 1.) /
|
||||
(possible_matches_by_order[i] + 1.))
|
||||
else:
|
||||
if possible_matches_by_order[i] > 0:
|
||||
precisions[i] = (float(matches_by_order[i]) /
|
||||
possible_matches_by_order[i])
|
||||
else:
|
||||
precisions[i] = 0.0
|
||||
|
||||
if min(precisions) > 0:
|
||||
p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions)
|
||||
geo_mean = math.exp(p_log_sum)
|
||||
else:
|
||||
geo_mean = 0
|
||||
|
||||
ratio = float(translation_length) / reference_length
|
||||
|
||||
if ratio > 1.0:
|
||||
bp = 1.
|
||||
else:
|
||||
bp = math.exp(1 - 1. / ratio)
|
||||
|
||||
bleu = geo_mean * bp
|
||||
|
||||
return (bleu, precisions, bp, ratio, translation_length, reference_length)
|
||||
|
||||
|
||||
def _bleu(ref_file, trans_file, subword_option=None):
|
||||
max_order = 4
|
||||
smooth = True
|
||||
ref_files = [ref_file]
|
||||
reference_text = []
|
||||
for reference_filename in ref_files:
|
||||
with open(reference_filename) as fh:
|
||||
reference_text.append(fh.readlines())
|
||||
per_segment_references = []
|
||||
for references in zip(*reference_text):
|
||||
reference_list = []
|
||||
for reference in references:
|
||||
reference_list.append(reference.strip().split())
|
||||
per_segment_references.append(reference_list)
|
||||
translations = []
|
||||
with open(trans_file) as fh:
|
||||
for line in fh:
|
||||
translations.append(line.strip().split())
|
||||
bleu_score, _, _, _, _, _ = compute_bleu(per_segment_references, translations, max_order, smooth)
|
||||
return round(100 * bleu_score,2)
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
208
smooth_bleu.py
208
smooth_bleu.py
@ -1,208 +0,0 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
'''
|
||||
This script was adapted from the original version by hieuhoang1972 which is part of MOSES.
|
||||
'''
|
||||
|
||||
# $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $
|
||||
|
||||
'''Provides:
|
||||
|
||||
cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test().
|
||||
cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked().
|
||||
score_cooked(alltest, n=4): Score a list of cooked test sentences.
|
||||
|
||||
score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids.
|
||||
|
||||
The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible.
|
||||
'''
|
||||
|
||||
import sys, math, re, xml.sax.saxutils
|
||||
import subprocess
|
||||
import os
|
||||
|
||||
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
||||
nonorm = 0
|
||||
|
||||
preserve_case = False
|
||||
eff_ref_len = "shortest"
|
||||
|
||||
normalize1 = [
|
||||
('<skipped>', ''), # strip "skipped" tags
|
||||
(r'-\n', ''), # strip end-of-line hyphenation and join lines
|
||||
(r'\n', ' '), # join lines
|
||||
# (r'(\d)\s+(?=\d)', r'\1'), # join digits
|
||||
]
|
||||
normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1]
|
||||
|
||||
normalize2 = [
|
||||
(r'([\{-\~\[-\` -\&\(-\+\:-\@\/])', r' \1 '), # tokenize punctuation. apostrophe is missing
|
||||
(r'([^0-9])([\.,])', r'\1 \2 '), # tokenize period and comma unless preceded by a digit
|
||||
(r'([\.,])([^0-9])', r' \1 \2'), # tokenize period and comma unless followed by a digit
|
||||
(r'([0-9])(-)', r'\1 \2 ') # tokenize dash when preceded by a digit
|
||||
]
|
||||
normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2]
|
||||
|
||||
|
||||
def normalize(s):
|
||||
'''Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl.'''
|
||||
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
||||
if (nonorm):
|
||||
return s.split()
|
||||
if type(s) is not str:
|
||||
s = " ".join(s)
|
||||
# language-independent part:
|
||||
for (pattern, replace) in normalize1:
|
||||
s = re.sub(pattern, replace, s)
|
||||
s = xml.sax.saxutils.unescape(s, {'"': '"'})
|
||||
# language-dependent part (assuming Western languages):
|
||||
s = " %s " % s
|
||||
if not preserve_case:
|
||||
s = s.lower() # this might not be identical to the original
|
||||
for (pattern, replace) in normalize2:
|
||||
s = re.sub(pattern, replace, s)
|
||||
return s.split()
|
||||
|
||||
|
||||
def count_ngrams(words, n=4):
|
||||
counts = {}
|
||||
for k in range(1, n + 1):
|
||||
for i in range(len(words) - k + 1):
|
||||
ngram = tuple(words[i:i + k])
|
||||
counts[ngram] = counts.get(ngram, 0) + 1
|
||||
return counts
|
||||
|
||||
|
||||
def cook_refs(refs, n=4):
|
||||
'''Takes a list of reference sentences for a single segment
|
||||
and returns an object that encapsulates everything that BLEU
|
||||
needs to know about them.'''
|
||||
|
||||
refs = [normalize(ref) for ref in refs]
|
||||
maxcounts = {}
|
||||
for ref in refs:
|
||||
counts = count_ngrams(ref, n)
|
||||
for (ngram, count) in counts.items():
|
||||
maxcounts[ngram] = max(maxcounts.get(ngram, 0), count)
|
||||
return ([len(ref) for ref in refs], maxcounts)
|
||||
|
||||
|
||||
def cook_test(test, item, n=4):
|
||||
'''Takes a test sentence and returns an object that
|
||||
encapsulates everything that BLEU needs to know about it.'''
|
||||
(reflens, refmaxcounts) = item
|
||||
test = normalize(test)
|
||||
result = {}
|
||||
result["testlen"] = len(test)
|
||||
|
||||
# Calculate effective reference sentence length.
|
||||
|
||||
if eff_ref_len == "shortest":
|
||||
result["reflen"] = min(reflens)
|
||||
elif eff_ref_len == "average":
|
||||
result["reflen"] = float(sum(reflens)) / len(reflens)
|
||||
elif eff_ref_len == "closest":
|
||||
min_diff = None
|
||||
for reflen in reflens:
|
||||
if min_diff is None or abs(reflen - len(test)) < min_diff:
|
||||
min_diff = abs(reflen - len(test))
|
||||
result['reflen'] = reflen
|
||||
|
||||
result["guess"] = [max(len(test) - k + 1, 0) for k in range(1, n + 1)]
|
||||
|
||||
result['correct'] = [0] * n
|
||||
counts = count_ngrams(test, n)
|
||||
for (ngram, count) in counts.items():
|
||||
result["correct"][len(ngram) - 1] += min(refmaxcounts.get(ngram, 0), count)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def score_cooked(allcomps, n=4, ground=0, smooth=1):
|
||||
totalcomps = {'testlen': 0, 'reflen': 0, 'guess': [0] * n, 'correct': [0] * n}
|
||||
for comps in allcomps:
|
||||
for key in ['testlen', 'reflen']:
|
||||
totalcomps[key] += comps[key]
|
||||
for key in ['guess', 'correct']:
|
||||
for k in range(n):
|
||||
totalcomps[key][k] += comps[key][k]
|
||||
logbleu = 0.0
|
||||
all_bleus = []
|
||||
for k in range(n):
|
||||
correct = totalcomps['correct'][k]
|
||||
guess = totalcomps['guess'][k]
|
||||
addsmooth = 0
|
||||
if smooth == 1 and k > 0:
|
||||
addsmooth = 1
|
||||
logbleu += math.log(correct + addsmooth + sys.float_info.min) - math.log(guess + addsmooth + sys.float_info.min)
|
||||
if guess == 0:
|
||||
all_bleus.append(-10000000)
|
||||
else:
|
||||
all_bleus.append(math.log(correct + sys.float_info.min) - math.log(guess))
|
||||
|
||||
logbleu /= float(n)
|
||||
all_bleus.insert(0, logbleu)
|
||||
|
||||
brevPenalty = min(0, 1 - float(totalcomps['reflen'] + 1) / (totalcomps['testlen'] + 1))
|
||||
for i in range(len(all_bleus)):
|
||||
if i == 0:
|
||||
all_bleus[i] += brevPenalty
|
||||
all_bleus[i] = math.exp(all_bleus[i])
|
||||
return all_bleus
|
||||
|
||||
|
||||
def bleu(refs, candidate, ground=0, smooth=1):
|
||||
refs = cook_refs(refs)
|
||||
test = cook_test(candidate, refs)
|
||||
return score_cooked([test], ground=ground, smooth=smooth)
|
||||
|
||||
|
||||
def splitPuncts(line):
|
||||
return ' '.join(re.findall(r"[\w]+|[^\s\w]", line))
|
||||
|
||||
|
||||
def computeMaps(predictions, goldfile):
|
||||
predictionMap = {}
|
||||
goldMap = {}
|
||||
gf = open(goldfile, 'r')
|
||||
|
||||
for row in predictions:
|
||||
cols = row.strip().split('\t')
|
||||
if len(cols) == 1:
|
||||
(rid, pred) = (cols[0], '')
|
||||
else:
|
||||
(rid, pred) = (cols[0], cols[1])
|
||||
predictionMap[rid] = [splitPuncts(pred.strip().lower())]
|
||||
|
||||
for row in gf:
|
||||
(rid, pred) = row.split('\t')
|
||||
if rid in predictionMap: # Only insert if the id exists for the method
|
||||
if rid not in goldMap:
|
||||
goldMap[rid] = []
|
||||
goldMap[rid].append(splitPuncts(pred.strip().lower()))
|
||||
|
||||
sys.stderr.write('Total: ' + str(len(goldMap)) + '\n')
|
||||
return (goldMap, predictionMap)
|
||||
|
||||
|
||||
# m1 is the reference map
|
||||
# m2 is the prediction map
|
||||
def bleuFromMaps(m1, m2):
|
||||
score = [0] * 5
|
||||
num = 0.0
|
||||
|
||||
for key in m1:
|
||||
if key in m2:
|
||||
bl = bleu(m1[key], m2[key][0])
|
||||
score = [score[i] + bl[i] for i in range(0, len(bl))]
|
||||
num += 1
|
||||
return [s * 100.0 / num for s in score]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
reference_file = sys.argv[1]
|
||||
predictions = []
|
||||
for row in sys.stdin:
|
||||
predictions.append(row)
|
||||
(goldMap, predictionMap) = computeMaps(predictions, reference_file)
|
||||
print(bleuFromMaps(goldMap, predictionMap)[0])
|
@ -1,22 +0,0 @@
|
||||
from tokenizers import ByteLevelBPETokenizer
|
||||
|
||||
paths = ['train_code.txt', 'train_doc.txt']
|
||||
|
||||
# Initialize a tokenizer
|
||||
tokenizer = ByteLevelBPETokenizer()
|
||||
|
||||
# Customize training
|
||||
tokenizer.train(files=paths, vocab_size=32000, min_frequency=3, special_tokens=[
|
||||
"<pad>",
|
||||
"<s>",
|
||||
"</s>",
|
||||
"<unk>",
|
||||
"<mask>"
|
||||
])
|
||||
|
||||
# Save files to disk
|
||||
tokenizer.save_model("./salesforce", "codet5")
|
||||
|
||||
print(
|
||||
tokenizer.encode("<s> hello <unk> Don't you love 🤗 Transformers <mask> yes . </s>").tokens
|
||||
)
|
Loading…
Reference in New Issue
Block a user