CodeT5/run_gen.py

387 lines
20 KiB
Python
Raw Normal View History

2021-09-03 09:58:19 -04:00
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
import os
import logging
import argparse
import math
import numpy as np
from tqdm import tqdm
import multiprocessing
import time
import torch
2021-09-03 09:58:19 -04:00
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from models import build_or_load_gen_model
from evaluator import smooth_bleu
from evaluator.CodeBLEU import calc_code_bleu
from evaluator.bleu import _bleu
from utils import get_filenames, get_elapse_time, load_and_cache_gen_data
from configs import add_args, set_seed, set_dist
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def eval_ppl_epoch(args, eval_data, eval_examples, model, tokenizer):
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
# Start evaluating model
logger.info(" " + "***** Running ppl evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
eval_loss, batch_num = 0, 0
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval ppl"):
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
eval_loss += loss.item()
batch_num += 1
eval_loss = eval_loss / batch_num
eval_ppl = round(np.exp(eval_loss), 5)
return eval_ppl
def eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, split_tag, criteria):
logger.info(" ***** Running bleu evaluation on {} data*****".format(split_tag))
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_sampler = SequentialSampler(eval_data)
if args.data_num == -1:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
else:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
pred_ids = []
bleu, codebleu = 0.0, 0.0
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval bleu for {} set".format(split_tag)):
source_ids = batch[0].to(args.device)
source_mask = source_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
preds = model(source_ids=source_ids, source_mask=source_mask)
top_preds = [pred[0].cpu().numpy() for pred in preds]
else:
preds = model.generate(source_ids,
attention_mask=source_mask,
use_cache=True,
num_beams=args.beam_size,
early_stopping=args.task == 'summarize',
max_length=args.max_target_length)
top_preds = list(preds.cpu().numpy())
pred_ids.extend(top_preds)
2021-09-03 09:58:19 -04:00
pred_nls = [tokenizer.decode(id, skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in pred_ids]
output_fn = os.path.join(args.res_dir, "test_{}.output".format(criteria))
gold_fn = os.path.join(args.res_dir, "test_{}.gold".format(criteria))
src_fn = os.path.join(args.res_dir, "test_{}.src".format(criteria))
if args.task in ['defect']:
target_dict = {0: 'false', 1: 'true'}
golds = [target_dict[ex.target] for ex in eval_examples]
eval_acc = np.mean([int(p == g) for p, g in zip(pred_nls, golds)])
result = {'em': eval_acc * 100, 'bleu': 0, 'codebleu': 0}
2021-09-03 09:58:19 -04:00
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1, open(src_fn, 'w') as f2:
for pred_nl, gold in zip(pred_nls, eval_examples):
f.write(pred_nl.strip() + '\n')
f1.write(target_dict[gold.target] + '\n')
f2.write(gold.source.strip() + '\n')
logger.info("Save the predictions into %s", output_fn)
else:
dev_accs, predictions = [], []
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1, open(src_fn, 'w') as f2:
for pred_nl, gold in zip(pred_nls, eval_examples):
dev_accs.append(pred_nl.strip() == gold.target.strip())
if args.task in ['summarize']:
predictions.append(str(gold.idx) + '\t' + pred_nl)
f.write(str(gold.idx) + '\t' + pred_nl.strip() + '\n')
f1.write(str(gold.idx) + '\t' + gold.target.strip() + '\n')
f2.write(str(gold.idx) + '\t' + gold.source.strip() + '\n')
else:
f.write(pred_nl.strip() + '\n')
f1.write(gold.target.strip() + '\n')
f2.write(gold.source.strip() + '\n')
if args.task == 'summarize':
2021-09-03 09:58:19 -04:00
(goldMap, predictionMap) = smooth_bleu.computeMaps(predictions, gold_fn)
bleu = round(smooth_bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
else:
bleu = round(_bleu(gold_fn, output_fn), 2)
if args.task in ['concode', 'translate', 'refine']:
2021-09-03 09:58:19 -04:00
codebleu = calc_code_bleu.get_codebleu(gold_fn, output_fn, args.lang)
result = {'em': np.mean(dev_accs) * 100, 'bleu': bleu}
if args.task == 'concode':
2021-09-03 09:58:19 -04:00
result['codebleu'] = codebleu * 100
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key], 4)))
return result
def main():
parser = argparse.ArgumentParser()
args = add_args(parser)
logger.info(args)
t0 = time.time()
set_dist(args)
set_seed(args)
config, model, tokenizer = build_or_load_gen_model(args)
model.to(args.device)
if args.n_gpu > 1:
# for DataParallel
model = torch.nn.DataParallel(model)
pool = multiprocessing.Pool(args.cpu_cont)
args.train_filename, args.dev_filename, args.test_filename = get_filenames(args.data_dir, args.task, args.sub_task)
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+')
if args.do_train:
if args.local_rank in [-1, 0] and args.data_num == -1:
2021-09-15 09:27:16 -04:00
summary_fn = '{}/{}'.format(args.summary_dir, '/'.join(args.output_dir.split('/')[1:]))
2021-09-03 09:58:19 -04:00
tb_writer = SummaryWriter(summary_fn)
# Prepare training data loader
train_examples, train_data = load_and_cache_gen_data(args, args.train_filename, pool, tokenizer, 'train')
train_sampler = RandomSampler(train_data) if args.local_rank == -1 else DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size,
num_workers=4, pin_memory=True)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
num_train_optimization_steps = args.num_train_epochs * len(train_dataloader)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=num_train_optimization_steps)
# Start training
train_example_num = len(train_data)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_example_num)
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Batch num = %d", math.ceil(train_example_num / args.train_batch_size))
logger.info(" Num epoch = %d", args.num_train_epochs)
dev_dataset = {}
global_step, best_bleu_em, best_ppl = 0, -1, 1e6
not_loss_dec_cnt, not_bleu_em_inc_cnt = 0, 0 if args.do_eval_bleu else 1e6
for cur_epoch in range(args.start_epoch, int(args.num_train_epochs)):
bar = tqdm(train_dataloader, total=len(train_dataloader), desc="Training")
nb_tr_examples, nb_tr_steps, tr_loss = 0, 0, 0
model.train()
for step, batch in enumerate(bar):
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
if nb_tr_steps % args.gradient_accumulation_steps == 0:
# Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
train_loss = round(tr_loss * args.gradient_accumulation_steps / (nb_tr_steps + 1), 4)
bar.set_description("[{}] Train loss {}".format(cur_epoch, round(train_loss, 3)))
if args.do_eval:
# Eval model with dev dataset
if 'dev_loss' in dev_dataset:
eval_examples, eval_data = dev_dataset['dev_loss']
else:
eval_examples, eval_data = load_and_cache_gen_data(args, args.dev_filename, pool, tokenizer, 'dev')
dev_dataset['dev_loss'] = eval_examples, eval_data
eval_ppl = eval_ppl_epoch(args, eval_data, eval_examples, model, tokenizer)
result = {'epoch': cur_epoch, 'global_step': global_step, 'eval_ppl': eval_ppl}
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(" " + "*" * 20)
if args.data_num == -1:
tb_writer.add_scalar('dev_ppl', eval_ppl, cur_epoch)
# save last checkpoint
if args.save_last_checkpoints:
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
if eval_ppl < best_ppl:
not_loss_dec_cnt = 0
logger.info(" Best ppl:%s", eval_ppl)
logger.info(" " + "*" * 20)
fa.write("[%d] Best ppl changed into %.4f\n" % (cur_epoch, eval_ppl))
best_ppl = eval_ppl
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best ppl model into %s", output_model_file)
else:
not_loss_dec_cnt += 1
logger.info("Ppl does not decrease for %d epochs", not_loss_dec_cnt)
if all([x > args.patience for x in [not_bleu_em_inc_cnt, not_loss_dec_cnt]]):
early_stop_str = "[%d] Early stop as not_bleu_em_inc_cnt=%d, and not_loss_dec_cnt=%d\n" % (
cur_epoch, not_bleu_em_inc_cnt, not_loss_dec_cnt)
logger.info(early_stop_str)
fa.write(early_stop_str)
break
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if args.do_eval_bleu:
eval_examples, eval_data = load_and_cache_gen_data(args, args.dev_filename, pool, tokenizer, 'dev',
only_src=True, is_sample=True)
result = eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, 'dev', 'e%d' % cur_epoch)
dev_bleu, dev_em = result['bleu'], result['em']
if args.task in ['summarize']:
dev_bleu_em = dev_bleu
elif args.task in ['defect']:
dev_bleu_em = dev_em
else:
dev_bleu_em = dev_bleu + dev_em
if args.data_num == -1:
tb_writer.add_scalar('dev_bleu_em', dev_bleu_em, cur_epoch)
# tb_writer.add_scalar('dev_em', dev_em, cur_epoch)
if dev_bleu_em > best_bleu_em:
not_bleu_em_inc_cnt = 0
logger.info(" [%d] Best bleu+em: %.2f (bleu: %.2f, em: %.2f)",
cur_epoch, dev_bleu_em, dev_bleu, dev_em)
logger.info(" " + "*" * 20)
best_bleu_em = dev_bleu_em
fa.write("[%d] Best bleu+em changed into %.2f (bleu: %.2f, em: %.2f)\n" % (
cur_epoch, best_bleu_em, dev_bleu, dev_em))
# Save best checkpoint for best bleu
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best bleu model into %s", output_model_file)
else:
not_bleu_em_inc_cnt += 1
logger.info("Bleu does not increase for %d epochs", not_bleu_em_inc_cnt)
fa.write(
"[%d] Best bleu+em (%.2f) does not drop changed for %d epochs, cur bleu+em: %.2f (bleu: %.2f, em: %.2f)\n" % (
cur_epoch, best_bleu_em, not_bleu_em_inc_cnt, dev_bleu_em, dev_bleu, dev_em))
2021-09-03 09:58:19 -04:00
if all([x > args.patience for x in [not_bleu_em_inc_cnt, not_loss_dec_cnt]]):
stop_early_str = "[%d] Early stop as not_bleu_em_inc_cnt=%d, and not_loss_dec_cnt=%d\n" % (
cur_epoch, not_bleu_em_inc_cnt, not_loss_dec_cnt)
logger.info(stop_early_str)
fa.write(stop_early_str)
break
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if args.local_rank in [-1, 0] and args.data_num == -1:
tb_writer.close()
logger.info("Finish training and take %s", get_elapse_time(t0))
if args.do_test:
logger.info(" " + "***** Testing *****")
logger.info(" Batch size = %d", args.eval_batch_size)
for criteria in ['best-bleu']:
2021-09-03 09:58:19 -04:00
file = os.path.join(args.output_dir, 'checkpoint-{}/pytorch_model.bin'.format(criteria))
logger.info("Reload model from {}".format(file))
model.load_state_dict(torch.load(file))
eval_examples, eval_data = load_and_cache_gen_data(args, args.test_filename, pool, tokenizer, 'test',
only_src=True, is_sample=False)
result = eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, 'test', criteria)
test_bleu, test_em = result['bleu'], result['em']
test_codebleu = result['codebleu'] if 'codebleu' in result else 0
result_str = "[%s] bleu-4: %.2f, em: %.4f, codebleu: %.4f\n" % (criteria, test_bleu, test_em, test_codebleu)
logger.info(result_str)
fa.write(result_str)
if args.res_fn:
with open(args.res_fn, 'a+') as f:
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file))
f.write(result_str)
logger.info("Finish and take {}".format(get_elapse_time(t0)))
fa.write("Finish and take {}".format(get_elapse_time(t0)))
fa.close()
if __name__ == "__main__":
main()