mirror of
https://github.com/salesforce/CodeT5.git
synced 2024-10-01 06:35:38 -04:00
84 lines
2.5 KiB
Bash
84 lines
2.5 KiB
Bash
|
export HF_DATASETS_CACHE="/export/share/wang.y/workspace/cache_data"
|
||
|
export TRANSFORMERS_CACHE="/export/share/wang.y/workspace/cache_model"
|
||
|
export XDG_CACHE_HOME="/export/share/wang.y/workspace/cache_model"
|
||
|
export WORKDIR="/export/share/wang.y/workspace/CodeT5_release"
|
||
|
export PYTHONPATH=$WORKDIR
|
||
|
|
||
|
TASK=${1}
|
||
|
SUB_TASK=${2}
|
||
|
MODEL_TAG=${3}
|
||
|
GPU=${4}
|
||
|
DATA_NUM=${5}
|
||
|
BS=${6}
|
||
|
LR=${7}
|
||
|
SRC_LEN=${8}
|
||
|
TRG_LEN=${9}
|
||
|
PATIENCE=${10}
|
||
|
EPOCH=${11}
|
||
|
WARMUP=${12}
|
||
|
GPU_TYPE=${13}
|
||
|
|
||
|
RES_FN=${14}
|
||
|
|
||
|
MODEL_PATH='/export/share/wang.y/workspace/CodeT5_release/pretrained_models'
|
||
|
|
||
|
if [[ $DATA_NUM == -1 ]]; then
|
||
|
DATA_TAG='all'
|
||
|
else
|
||
|
DATA_TAG=$DATA_NUM
|
||
|
EPOCH=1
|
||
|
fi
|
||
|
|
||
|
FULL_MODEL_TAG=${MODEL_TAG}_${DATA_TAG}_lr${LR}_bs${BS}_src${SRC_LEN}_trg${TRG_LEN}_pat${PATIENCE}_e${EPOCH}
|
||
|
|
||
|
if [[ ${SUB_TASK} == none ]]; then
|
||
|
OUTPUT_DIR=saved_models/${TASK}/${FULL_MODEL_TAG}
|
||
|
else
|
||
|
OUTPUT_DIR=saved_models/${TASK}/${SUB_TASK}/${FULL_MODEL_TAG}
|
||
|
fi
|
||
|
|
||
|
CACHE_DIR=${OUTPUT_DIR}/cache_data
|
||
|
RES_DIR=${OUTPUT_DIR}/prediction
|
||
|
LOG=${OUTPUT_DIR}/train.log
|
||
|
mkdir -p ${OUTPUT_DIR}
|
||
|
mkdir -p ${CACHE_DIR}
|
||
|
mkdir -p ${RES_DIR}
|
||
|
|
||
|
if [[ $MODEL_TAG == roberta ]]; then
|
||
|
MODEL_TYPE=roberta
|
||
|
TOKENIZER=roberta-base
|
||
|
MODEL_NAME=roberta-base
|
||
|
elif [[ $MODEL_TAG == codebert ]]; then
|
||
|
MODEL_TYPE=roberta
|
||
|
TOKENIZER=roberta-base
|
||
|
MODEL_NAME=microsoft/codebert-base
|
||
|
elif [[ $MODEL_TAG == bart_base ]]; then
|
||
|
MODEL_TYPE=bart
|
||
|
TOKENIZER=facebook/bart-base
|
||
|
MODEL_NAME=facebook/bart-base
|
||
|
elif [[ $MODEL_TAG == codet5_small ]]; then
|
||
|
MODEL_TYPE=codet5
|
||
|
TOKENIZER=roberta-base
|
||
|
MODEL_NAME=${MODEL_PATH}/codet5_small
|
||
|
elif [[ $MODEL_TAG == codet5_base ]]; then
|
||
|
MODEL_TYPE=codet5
|
||
|
TOKENIZER=roberta-base
|
||
|
MODEL_NAME=${MODEL_PATH}/codet5_base
|
||
|
fi
|
||
|
|
||
|
if [[ ${TASK} == 'clone' ]]; then
|
||
|
RUN_FN=${WORKDIR}/run_clone.py
|
||
|
else
|
||
|
RUN_FN=${WORKDIR}/run_gen.py
|
||
|
fi
|
||
|
|
||
|
|
||
|
CUDA_VISIBLE_DEVICES=${GPU} \
|
||
|
/export/home/miniconda3/envs/${GPU_TYPE}/bin/python ${RUN_FN} ${MULTI_TASK_AUG} \
|
||
|
--do_test --do_train --do_eval --do_eval_bleu --save_last_checkpoints --always_save_model \
|
||
|
--task ${TASK} --sub_task ${SUB_TASK} --model_type ${MODEL_TYPE} --data_num ${DATA_NUM} \
|
||
|
--num_train_epochs ${EPOCH} --warmup_steps ${WARMUP} --learning_rate ${LR}e-5 --patience ${PATIENCE} \
|
||
|
--tokenizer_name=${TOKENIZER} --model_name_or_path=${MODEL_NAME} --output_dir ${OUTPUT_DIR} \
|
||
|
--data_dir ${WORKDIR}/data --cache_path ${CACHE_DIR} --res_dir ${RES_DIR} --res_fn ${RES_FN} \
|
||
|
--train_batch_size ${BS} --eval_batch_size ${BS} --max_source_length ${SRC_LEN} --max_target_length ${TRG_LEN} \
|
||
|
2>&1 | tee ${LOG}
|