CodeT5/configs.py

139 lines
7.5 KiB
Python
Raw Normal View History

2021-09-03 09:58:19 -04:00
import random
import torch
import logging
import multiprocessing
import numpy as np
logger = logging.getLogger(__name__)
def add_args(parser):
parser.add_argument("--task", type=str, required=True,
choices=['summarize', 'refine', 'translate', 'concode', 'clone', 'defect'])
parser.add_argument("--sub_task", type=str, default='')
parser.add_argument("--lang", type=str, default='')
parser.add_argument("--eval_task", type=str, default='')
parser.add_argument("--model_type", default="roberta", type=str, choices=['roberta', 't5', 'bart', 'codet5'])
parser.add_argument("--add_lang_ids", action='store_true')
parser.add_argument("--data_num", default=-1, type=int)
parser.add_argument("--start_epoch", default=0, type=int)
parser.add_argument("--num_train_epochs", default=100, type=int)
parser.add_argument("--patience", default=5, type=int)
parser.add_argument("--tokenizer_path", type=str, default='/export/share/wang.y/workspace/CodeT5_release/tokenizer/salesforce')
parser.add_argument("--cache_path", type=str, required=True)
parser.add_argument("--data_dir", type=str, required=True)
parser.add_argument("--res_dir", type=str, required=True)
parser.add_argument("--res_fn", type=str, default='')
parser.add_argument("--add_task_prefix", action='store_true', help="Whether to add task prefix for t5 and codet5")
parser.add_argument("--save_last_checkpoints", action='store_true')
parser.add_argument("--always_save_model", action='store_true')
parser.add_argument("--do_eval_bleu", action='store_true', help="Whether to evaluate bleu on dev set.")
## Required parameters
parser.add_argument("--model_name_or_path", default="roberta-base", type=str,
help="Path to pre-trained model: e.g. roberta-base")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--load_model_path", default=None, type=str,
help="Path to trained model: Should contain the .bin files")
## Other parameters
parser.add_argument("--train_filename", default=None, type=str,
help="The train filename. Should contain the .jsonl files for this task.")
parser.add_argument("--dev_filename", default=None, type=str,
help="The dev filename. Should contain the .jsonl files for this task.")
parser.add_argument("--test_filename", default=None, type=str,
help="The test filename. Should contain the .jsonl files for this task.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="roberta-base", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--block_size", default=512, type=int)
parser.add_argument("--max_source_length", default=64, type=int,
help="The maximum total source sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--max_target_length", default=32, type=int,
help="The maximum total target sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run eval on the train set.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument("--train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--beam_size", default=10, type=int,
help="beam size for beam search")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--save_steps", default=-1, type=int, )
parser.add_argument("--log_steps", default=-1, type=int, )
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--eval_steps", default=-1, type=int,
help="")
parser.add_argument("--train_steps", default=-1, type=int,
help="")
parser.add_argument("--warmup_steps", default=100, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--seed', type=int, default=1234,
help="random seed for initialization") # previous one 42
args = parser.parse_args()
if args.task in ['summarize']:
args.lang = args.sub_task
elif args.task in ['refine', 'concode', 'clone']:
args.lang = 'java'
elif args.task == 'defect':
args.lang = 'c'
elif args.task == 'translate':
args.lang = 'c_sharp' if args.sub_task == 'java-cs' else 'java'
return args
def set_dist(args):
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
# Setup for distributed data parallel
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
cpu_cont = multiprocessing.cpu_count()
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, cpu count: %d",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), cpu_cont)
args.device = device
args.cpu_cont = cpu_cont
def set_seed(args):
"""set random seed."""
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)